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ABSTRACT

With the VLSI technology shrinking to 7nm and beyond, the Redundant Local Loop (RLL), also known as via
pillar, becomes a promising candidate of redundant via insertion due to its compatibility with the unidirectional
layout style. Existing RLL insertion approaches only leverage rule-based heuristics for manufacturing constraints,
which can no longer obtain a large enough Process Window (PW) in advanced technology nodes. It is imperative
to develop new techniques to optimize lithography process window while inserting RLL to achieve a good yield. In
this paper, we propose a machine learning-based litho-aware RLL insertion framework. Conventional lithography
simulation requires tremendous computational resources to evaluate the lithography quality accurately, which is
not feasible for process window exploration. We formulate the lithography simulation as a regression task and
develop a customized Conventional Neural Network (CNN) architecture to predict the Depth of Focus (DOF),
a standard metric for evaluating process window. We propose a complete flow for litho-aware RLL insertion
based on the CNN model for process window evaluation. The commercial lithography simulator evaluates
the effectiveness of the proposed framework. Experimental results demonstrate that our lithography model
can predict the DOF with high accuracy and generalize well on unseen patterns while achieving orders of
magnitude speedup compared to conventional lithography simulation. Our litho-aware RLL insertion framework
can effectively improve the lithography process window with comparable runtime and insertion rate compared
to the state-of-the-art method.
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1. INTRODUCTION

With the continuous scaling of semiconductor technology nodes, redundant via insertion becomes a pivotal
technology to improve yield. In advanced technology nodes with the unidirectional routing style, conventional
methods of inserting redundant vias have become obsolete because they introduced metal shapes in the non-
preferred direction. Fig. 1(b) shows that traditional redundant via insertion introduces Metal-3 (M3) wire
bending in the non-preferred direction. To overcome this issue, Redundant Local Loop (RLL), also known as
via-pillar, is proposed to ensure the consistent direction of each metal wire with the design rules while introducing
redundant vias (Fig. 1(c)). Recent works1,2 are proposed to optimize the delay and performance of chips in RLL
insertion. Xu et al.3 propose a rule-based algorithm for RLL insertion considering advanced manufacturing
constraints.

Nevertheless, such approaches can no longer obtain a large enough process window in advanced technology
nodes. It is imperative to develop new techniques to optimize lithography while inserting RLL to achieve a good
yield. In this paper, we propose a machine learning-based litho-aware RLL insertion framework. Conventional
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Figure 1. (a) single via, (b) traditional redundant via insertion with wire bending, (c) redundant local loop that compatible
with one-dimensional routing.

lithography simulation requires tremendous computational resources to accurately evaluate the lithography qual-
ity, which is not feasible for process window exploration. Considering the fact that machine learning approaches
have demonstrated superior computational efficiency to traditional simulation methods, we formulate the lithog-
raphy process window simulation as a regression task and develop a customized conventional neural network
(CNN) architecture to predict the Depth of Focus (DOF), a standard metric for evaluating lithography process
window. This proposed framework can trade-off between accuracy and runtime. The major contributions of this
paper are highlighted as follows.

• The lithography process window prediction problem is formulated as a regression task without lithography
simulation.

• The CNN network is developed to achieve both high accuracy and efficiency.

• Experimental results demonstrate that our framework can increase the average lithography process window
by 1.8 % for benchmarks at 10 nm technology node with comparable insertion rate to sate-of-work.3

The rest of this paper is organized as follows. Section 2 reviews the basic concepts and gives the prob-
lem formulation. Section 3 provides a detailed explanation of the proposed framework. Section 4 reports the
experimental results. Finally, Section 5 concludes the paper.

2. PRELIMINARIES

In modern VLSI redundant via insertion, the optimization usually includes multiple objectives, such as wirelength
and the number of vias. A larger number of vias and wirelength leads to a considerable timing impact of a local
loop structure4 and difficulty for post stages. In practice, the solution that neglected the above metrics may
result in congestion and failure. Hence, the RLLs with less redundant vias and wirelength are preferred. We
adopt the cost metric in this work, considering both wirelength and the number of vias.

Definition 1 (Cost). Cost c ∈ R evaluates the cost of an RLL structure with N metal layers and N − 1 via
layers, which is defined as follows:

c =

N∑
i=0

αimi +

N−1∑
i=0

βivi , (1)

where α, β are user-defined parameters, mi denotes the redundant wirelength on the ith metal layer, vi denotes
the number of redundant vias on the ith via layer.

In advanced technology nodes, the cost is not enough to evaluate an RLL structure. Different RLLs with
similar costs may lead to distinctive yield impacts. So, we select the depth of focus (DOF) metric to evaluate
the lithography of a pattern.

Definition 2 (DOF). DOF ∈ R evaluates the performance of optical lithography. It can be defined as the range
of focus that keeps the resist profile of a given feature within all specifications over a specified exposure range.

In practical semiconductor lithograph, DOF generally depends on resist, process parameters, and imaged
patterns. Therefore, DOF is generally obtained by lithography simulation. In this work, we introduce a lithog-
raphy machine learning model to speed up the simulation flow, evaluated by Mean Absolute Percentage Error
(MAPE).
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Definition 3 (MAPE). MAPE ∈ R evaluates the prediction accuracy of the proposed lithography model:

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ , (2)

where yi is the actual DOF value obtained by lithography simulation, and ŷi is the predicted DOF value.

With all the metrics defined, the redundant local loop insertion in the unidirectional layout is defined as
follows:

Problem 1 (Lithography Model). Given a dataset containing the labelled data, pairs of layout patterns,
and corresponding DOFs obtained by lithography simulation, train a model that can accurately predict a given
layout pattern’s DOF (i.e., minimize MAPE).

Problem 2 (Redundant Local Loop Insertion). Given the unidirectional routing design and design rules,
produce a legal RLL insertion solution with optimized insertion rate, total cost, and lithography quality.

3. LITHO-AWARE RLL INSERTION FRAMEWORK

3.1 Data Preparation

For training the proposed lithography model, a labelled dataset is needed. The dataset includes 900 randomly
selected 1.04× 1.04 mm2 clips of each metal layer, and Mask Optimization (MO) has been applied to those clips
to obtain the corresponding DOFs. The original layout data format (GDS II) is composed of succeeding vertex
coordinate lists. Therefore, we encode these vertex coordinates into pixels. In our work, the routing solutions
are based on a routing grid model, and the 1.04× 1.04 mm2 clips can be pixeled into binary images of size
52× 52 pixels without loss. For a better representation under the optical proximity effect, 5.04× 5.04 mm2 clips
centred on selected clips are pixeled into binary images of size 252× 252 pixels. The dataset is divided into two
parts: 50 % are preprocessed for CNN model training, while 50 % are used for validation. Rotation and flipping
are applied to the training dataset to obtain various layout patterns further.

3.2 Convolutional Neural Network Architecture

Convolutional Neural Networks (CNN) have been proved capable of image classification and recognition.5 Con-
volutional layer, pooling layer, and Fully Connected (FC) layer are three main components of CNN architecture.
The convolutional layer’s parameters consist of a set of learnable filters (or kernels), with a small receptive field
and apply a convolution operation to the input, passing the result to the next layer. As a result, the network
learns filters that activate when it detects some specific features. Pooling layers extract the statistical summary
of the previous layer’s local regions reducing the feature map dimension. Fully connected layers are used to
flatten the feature maps extracted from multiple convolution and pool operations into a one-dimensional vector
to predict the final results. The CNN architecture for the DOF prediction problem is summarized in Table 1,
consisting of five convolution blocks and three FC layers. The first convolutional layer filters the input vectors of
size 252× 252 with a kernel of size 5×5. The remaining convolutional layers with kernels size of 3× 3 to obtain
a more profound representation. Max-pooling with filter size 2× 2 and stride 2 is applied after each convolution
block. Three FC layers are applied to flatten high-dimensional feature vectors to the final result.

3.3 ILP Formulation

Problem 2 can be formulated as an assignment problem. In this work, we extend the ILP formulation developed
in Xu et al.,3 and add a DOF item in the objective function to improve the lithography process window. Our
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Table 1. The CNN architecture.

Layper Kernel Stride Output Size Layper kernel Stride Output Size

Conv1-1 5× 5× 4 2 124× 124× 4 Pool1 2× 2 2 62× 62× 4

Conv2-1 3× 3× 8 1 62× 62× 8 Conv2-2 3× 3× 8 1 62× 62× 8

Conv2-3 3× 3× 8 1 62× 62× 8 Pool2 2× 2 2 31× 31× 8

Conv3-1 3× 3× 16 1 31× 31× 16 Conv3-2 3× 3× 16 1 31× 31× 16

Conv3-3 3× 3× 16 1 31× 31× 16 Pool3 2× 2 2 15× 15× 16

Conv4-1 3× 3× 32 1 15× 15× 32 Conv4-2 3× 3× 32 1 15× 15× 32

Conv4-3 3× 3× 32 1 15× 15× 32 Pool4 2× 2 2 7× 7× 32

Conv5-1 3× 3× 32 1 7× 7× 32 Conv5-2 3× 3× 32 1 7× 7× 32

Conv5-3 3× 3× 32 1 7× 7× 32 Pool5 2× 2 2 3× 3× 32

FC1 - - 1024 FC2 - - 512

FC3 - - 1

modifications are highlighted in blue.

max δ
∑
xi

nixi − ε
∑
xi

cixi + ζ
∑
xi

pixi (3)

s.t.
∑

xi∈Xj

xi ≤ 1 ∀Xj ∈ X (3-c1)

∑
xi∈A

xi ≤ 1 ∀A ∈ G ∪ SA (3-c2)

∑
llci∈Wk

nik · xi ≤ DBk ∀Wk ∈W (3-c3)

xi ∈ {0, 1} ∀xi ∈ Xj (3-c4)

Eq. (3) consists of three terms. The first term
∑

xi
nixi is the total number of redundant vias, which improves

the insertion rate; The second term
∑

xi
cixi aims to reduce the overall cost of inserted RLLs; The third term∑

xi
pixi is used to improve the lithography process window of the target design. The custom parameters θ, ε,

and ζ can be flexibly set to trade-off those items.

4. EXPERIMENTAL RESULTS

4.1 Experiment setup

We adopt Pytorch6 to implement the CNN model. The experiments ran on a 64-bit Linux machine with two
20-core Intel Xeon@2.1 GHz CPUs and 64 GB RAM. The commercial lithography software Tachyon runs on a
64-bit Linux machine with four Intel Xeon@2 GHz CPUs and 220 GB RAM.

The benchmarks from Xu et al.3 are listed in Table 3. Those benchmarks are shrunk to 10 nm technology
node. This shrinkage will not affect the algorithm’s behaviour since Xu et al.3 adopts a grid-based solution
strategy.

4.2 Lithography Model Validation

We use Adam7 as the gradient descent optimizer for model training. The learning rate is set to 0.01, the batch
size is set to 40, and the maximum number of iterations is 1000. The dropout rate is set to 0.5 to prevent
overfitting. The Mean Squared Error (MSE) is used as the loss function. We set αi (i ∈ [0, N ]) to 1 and βi
(i ∈ [0, N − 1]) to 5 in Eq. (1). δ and ε in Eq. (3) is set to 500 and 1 respectively. ζ is defined as ζ = e4(1−

p
120 ),

where p is the predicted lithography.
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Table 2. Notations.

rlli ith RLL candidate

ci the cost of rlli

vi the number of redundant vias that llci covers

ni the number of vias that llci covers

pi the lithography (i.e., DOF) of llci

xi the binary variable for llci

Xj the variable set for the RLLCs covering vi

Gk the kth set for RLL candidates occupying the same grid

SAk the kth set for RLL candidates occupying conflicting SAV grids

X, G, SA set for Xi, Gk and SAk, respectively

WK the kth density window

ni,k the number of vias of llci in Wk

DBk via density upper bound for Wk

W the set of density window Wk

δ, ε, ζ custom parameters

Table 3. Benchmark Statistics.3

Metric ecc efc ctl alu div top

#via 4013 4619 5873 6683 12 878 48 847

#nets 1539 1322 2062 2138 3792 12 988

#RLLC per via 47.3 39.0 43.7 32.6 36.0 35.2

We trained two CNN models for M2 and M3, respectively, to further improve the prediction accuracy. This
will not introduce too much runtime overhead. The maximum iteration of each model is set to 1000. Their
performances on training and testing datasets are reported in Table 4. It can be seen that the prediction
accuracy of the two metal layers of M2 and M3 are both about 3 %. The runtime to obtain the process window
using the lithography simulation tool exceeds 30 minutes, which is related to the scale of the layout. However, it
takes about 5 minutes to train a CNN model, and the runtime of predicting process window is about 3.2 ms. This
means that the proposed CNN model is more than 105× faster than the simulation tool, and the accuracy loss
is still within a reasonable range. On the other hand, the precision losses can still be further reduced. Since the
process windows of most benchmarks are 80 ∼ 100, the training suffers from a date imbalance issue, hindering
the achievement of high accuracy. Techniques such as data augmentation, and optimized sampling strategies can
address this concern. Due to this accuracy meets the requirements of our framework, we leave the exploration
in the future.

4.3 Framework Validation

As mentioned in Problem 2, the goal of the RLL is to maximize the inserting rate to improve the yield and
reduce the timing impact of the introduced redundant vias. With the proposed CNN model, we can predict the
process window of each RLL candidate. In this way, the trade-off between the insertion rate and the lithography
can be achieved. The insertion rate of the proposed framework tends to be reduced compared to Xu et al.,3

due to that their method takes the insertion rate as the only metric to be evaluated. We added a control group
(denoted as IR-R) whose insertion rate is randomly reduced to the same level as ours to control variables. The
comparison of our work, IR-R, and Xu et al.3is reported in Table 5.

The “Ratio” is based on Xu et al.3 as the baseline. It can be seen that we can increase the average
lithography process window by 4 % with comparable runtime. Compared with IR-R, we can achieve a 2 % more
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Table 4. Experimental result of the CNN models on training dataset and testing dataset.

Dateset Model MAPE (%) TpS (ms) *

Training

M2 2.77 3.42

M3 2.46 4.82

Avg. 2.61 4.12

Testing

M2 3.3 3.26

M3 3.08 2.94

Avg. 3.19 3.10

* TpS: The average runtime of each sample in the datasets.

Table 5. Comparison of inserting rate (IR) and lithography process window (PW) of different RLL inserting methods.

Design
Xu et al.3 Xu et al.3 (IR-R*) Ours

IR (%) PW IR (%) PW IR (%) PW

top 83.00 79.22 79.24 80.92 79.62 82.3

Ratio 1.00 1.00 0.95 1.02 0.96 1.04

* IR-R: The insertion rate is randomly reduced to close to ours.

average lithography process window with a 1 % higher insertion rate, which means that our framework can
effectively trade-off between insertion rate and the lithography quality.

Table 6 gives the detailed experimental result on benchmarks. One can find that the insertion rate reduction of
our framework is within the acceptable range (average 4.3 %), and the runtime is comparable. Those experimental
demonstrate that our litho-aware RLL insertion framework can effectively improve the lithography process quality
with comparable runtime and insertion rate. As the setting of the ε is flexible, we can adjust the weight of a
lithography item to the requirements of real-world applications. This paradigm provides a flexible framework to
meet the challenge of the DTCO methodology, which is promising at advanced nodes.

Table 6. Detailed experimental result on benchmarks.

Xu et al.3 Ours

Design IR (%) #RLL #RpR * T (s) IR (%) #RLL #RpR * T (s)

ecc 98.26 2542 2.45 3.7 96.61 2733 2.58 3.7

efc 92.35 2799 2.45 3.9 87.66 2866 2.57 3.9

ctl 95.23 3543 2.42 5.4 92.56 3746 2.55 5.4

alu 80.40 3232 2.34 5.2 75.69 3242 2.52 5.3

div 88.12 7103 2.40 11.0 83.11 7315 2.55 11.2

top 83.00 24705 2.36 37.0 79.62 25092 2.53 37.5

Avg. 89.56 7321 2.40 11.03 85.21 7499 2.55 11.17

Ratio 1.00 1.00 1.00 1.00 0.96 1.03 1.06 1.01

* #RpR: redundant via number per RLL.

5. CONCLUSION

In this paper, we present a litho-aware RLL insertion framework. The proposed framework considers the lithog-
raphy requirements in the RLL candidates selection stage. It achieves a trade-off between lithography process
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window and insertion rate compared with the traditional insertion algorithm. We also propose a CNN model
to estimate the process window, which can be 105× faster than the rigorous simulation. The experiments show
that the proposed framework can improve the average lithography process window by 1.8 % on benchmarks in
10 nm technology node. Future work includes developing algorithms to address data mismatch to improve the
DOF prediction accuracy.
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