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Abstract—The net orders in detailed routing are crucial to routing
closure, especially in most modern routers following the sequential routing
manner with the rip-up and reroute scheme. In advanced technology
nodes, detailed routing has to deal with complicated design rules and
large problem sizes, making its performance more sensitive to the order
of nets to be routed. In literature, the net orders are mostly determined
by simple heuristic rules tuned for specific benchmarks. In this work,
we propose an asynchronous reinforcement learning (RL) framework to
search for optimal ordering strategies automatically. By asynchronous
querying the router and training the RL agents, we can generate high-
performance routing sequences to achieve better solution quality.

I. INTRODUCTION

Routing is a critical and time-consuming step in physical design
[1]. Its solution impacts timing, power, and yield [2]. Routing is
usually divided into global routing and detailed routing, with the
former planning the rough routing regions and the latter finishing the
actual interconnections [3]. Unlike global routing, detailed routing
needs to handle plenty of design rules on a large grid graph. With
feature sizes scaling down with the technology nodes, the routing
grids become increasingly denser, leading to more complicated de-
sign rules from manufacturing, such as parallel-run spacing, end-
of-line spacing, corner-to-corner spacing, and minimum area [4],
[5]. Meanwhile, the grid graph for detailed routing is much larger
than that of global routing, indicating larger solution space. As a
result, detailed routing is becoming the most time-consuming step in
advanced technology nodes [4].

While routing has been studied for several decades with many
fundamental algorithms proposed, e.g., Lee’s algorithm, A* search,
negotiation-based rip-up and reroute scheme, etc., most of the atten-
tion has been paid to global routing for a long time [6], [7], [3]. In
the past few years, with advanced technology nodes coming to the
stage, the importance of detailed routing has been realized. Various
aspects of detailed routing have been investigated. For example, pin
access issues have been discussed in [8], [9], [10]. Ahrens et al.
explored specific data structures for efficient detailed routing [11].
Manufacturing constraints have also been explored in [12], [13], [14],
such as multiple patterning lithography friendly routing algorithms.

In recent ISPD contests [4], [5], detailed routing has been raised
as a fundamental challenge in the backend design with practical
benchmarks and realistic design rules. The contests largely stimulate
the researches in detailed routing and several high-performance and
robust routers have been proposed [15], [16], [17], [18], [19]. Sun
et al. [20] proposed a valid pin access pattern generalization with
a via-aware track assignment to minimize the overlaps between the
wire segments. TritonRoute [15] adopted integer linear programming
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(ILP) for parallel intra-layer routing. DRAPS [18] developed an A*-
interval-based path search algorithm to handle complicated design
rules. Dr.CU [16], [17] proposed an optimal correct-by-construction
path search algorithm and a two-level sparse data structure for
runtime and memory efficiency. RDTA [19] developed an analytical
approach to solve the track assignment problem following the global
routing guides. Attention router explored reinforcement learning to
solve the analog routing problem at a small scale [21].

Among the aforementioned detailed routers, most of them substan-
tially follow the sequential routing strategy with the negotiation-based
rip-up and reroute scheme [20], [18], [16], [17].

The parallelism is usually obtained by routing a batch of nets far
away enough from each other simultaneously. This means the routing
order of nets is critical to the performance of the algorithm. Currently,
the net ordering strategy is usually determined by simple heuristics,
e.g., the region size covered by a net. The performance may vary
from design to design and from router to router as well. Therefore,
a generic way to search for a good ordering strategy is desired to
achieve high-performance routing.

To find a good ordering strategy, in this work, we formulate the
strategy search problem into a reinforcement learning (RL) task to
automatically learn from the designs. The major contribution can be
summarized as follows.

• We formulate the ordering strategy search problem in sequential
detailed routing into a reinforcement learning task such that it
can be automatically learned.

• We develop an asynchronous reinforcement learning framework
to learn from multiple designs simultaneously. By developing
a customized neural network architecture, we can apply the
learned model to different designs as well.

• Experimental results on ISPD 2018 & 2019 contest benchmarks
[4], [5] demonstrate that the ordering strategy obtained from our
framework generalizes well and can achieve 14% fewer DRC
violations and 0.7% less total costs compared with the state-of-
the-art detailed router Dr.CU 2.0 [17].

The rest of this paper is organized as follows. Section II explains
the background of routing, reinforcement learning, and problem
formulation. Section III presents the algorithm details. Section IV
reports the experimental results on ISPD contest benchmarks. Finally,
Section V concludes the paper.

II. PRELIMINARIES

In this section, we introduce the background on VLSI routing,
reinforcement learning, and problem formulation.



A. Design Rules

More design rules are introduced in the advanced technology
nodes. Meanwhile, three fundamental and representative design rules
need to be considered [4]. (1) Short: a via or wire segment of a net
should not overlap with any object of another net. (2) Spacing: the
spacing between two objects should satisfy the minimum distances.
There are several different types of such requirements, e.g., end-
of-line spacing, parallel-run spacing, and cut spacing. (3) Minimum
area: a metal polygon should have an area larger than the minimum
threshold. Typical objectives for routing are to minimize the total
wirelength and the DRC violations.

B. Dr.CU 2.0 Sequential Detailed Router

In year 2018 and 2019, the ISPD contest was organized on detailed
routing [4], [5]. Dr.CU [17] won the first place in the ISPD 2019
contest and is open source. In this work, we adopt Dr.CU as the target
detailed routing framework for studying, while the methodology can
work on other routers as well. Fig. 2 illustrates its routing flow, which
is a typical procedure for most sequential routing algorithms as well.
Given a placed netlist, routing guides, routing tracks, and design rules,
it first assigns access points for each pin. Then it starts the rip-up
and reroute (RRR) iterations to accomplish the routing. During the
RRR iterations, if the router encounters congestion or DRC violations
when trying to route a net, it rips up the net and the conflicted nets,
leaving them for the next iteration to reroute. With enough iterations,
the router can achieve convergence. Finally, it performs a post-routing
refinement stage to reduce DRC violations. It needs to be noted that
within each RRR iteration, Dr.CU also exploits parallelism between
nets far away from each other, such that there will be no interaction
when simultaneously solving the routing problem of each net. This
does not change the sequential nature of the algorithm, i.e., routing in
a net-by-net manner, as it does not determine the routing of different
nets at the same time.

The solution quality of sequential routers like Dr.CU is highly
correlated to the order of nets to be routed. Fig. 1 shows the
distribution of solution quality with random net ordering routed by
Dr.CU. Although the wirelength does not change much, the order
affects both via count and the number of DRC violations. Thus,
the ordering strategy needs to be carefully designed for high-quality
routing across various benchmarks.

Dr.CU sorts nets by the routing region sizes (half-perimeter of the
bounding box) of each net in descent order. In other words, nets
covering large routing regions are routed first. However, we observe
that the routing region sizes of different nets can be very similar,
leading to random orders between these nets, and eventually causing
high variations in the final violations. For example, Fig. 3 shows that
5293 nets have the same routing region size, accounting for 14.4 % of
the total number of nets in benchmark ispd18_test3. Therefore,
there is a potential to improve the routing performance by developing
an ordering strategy considering more features.

C. Reinforcement Learning

Reinforcement learning enables the agent to learn a policy by
interacting with the environment to maximize the cumulative reward.
As illustrated in Fig. 4, at each step t, the agent observes a state
st, takes an action at based on st, receives a reward rt, and then
the state stochastically transits to the next state st+1. The objective
is to learn a policy π(a|s) that maximizes the expected cumulative
reward, starting from any state s.

In this work, we define the environment as the router, the agent as a
net order planner that ranks the nets based on the features (state). The
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Fig. 1: Distribution of solution quality with random net ordering (300
iterations). The relative standard deviation of the number of DRC
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Fig. 2: Routing Flow.

net ordering result is the action and the reward is positively related
to the solution quality, e.g., total wirelength and DRC violations.

D. Problem Formulation

We define the net ordering problem in detailed routing as follows.

Problem 1 (Net ordering). Given a set of nets N , train a net ordering
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Fig. 3: Distribution of the net routing region sizes in
ispd18_test3.

Fig. 4: Environment and agent system of reinforcement learning.



TABLE I: Features of Each Net.

Feature Dimension Description

Size 1 The size of the routing region (half-perimeter of
bounding box).

Degree 1 Number of nets with conflicts in its routing
region.

Count 1 The number of times it has been routed/rerouted.
Cost 1 The weighted sum of violations on it.
Via 1 Number of via on it.
WL 1 Wirelength.
LA 16 Layer assignment.

policy that can generate a ranking score si for each net ni ∈ N
used by a sequential detailed router. The following metrics should be
optimized simultaneously: (1) the total wirelength of all nets, (2) the
number of the total used vias, (3) the number of DRC violations.

III. ALGORITHM

In this section, we first define the state space, action space, reward,
and the basic RL setup. Then we explain the dedicated RL techniques
for our routing problem. In the end, we summarize the overall flow
of our RL algorithm.

A. Basic RL Setup

We define the state space, action space, and reward as follows:
State space S: A state s is the collective representation of features

for all nets. Table I summarizes the seven features for each net. The
first feature is the size of its routing region. The second feature
is its degree, which denotes the number of nets whose routing
region overlaps with it. The third feature is the number of times
routed/rerouted so far. The remaining four features are its costs
information, including the violations cost, wirelength, number of vias,
and metal layers assignment.

Action space A: An action a is a real number vector. Each number
is defined as an ordering score of a net.

Reward R: Given the ordering scores (action a), the environment
(router) will provide its feedback (i.e. evaluation metrics). The agent
receives a reward according to the environment’s feedback. The
reward r is defined as:

r = −Cagent + Ccu (1)

Where Cagent and Ccu are the total cost of all nets achieved by the
agent’s action a and Dr.CU’s default strategy. The total cost C is
defined as:

C =

4∑
i=1

wixi (2)

Where xi|i ∈ {1, 2, 3, 4} are the evaluation metrics used in the
ISPD Contests, including short violation, spacing violation, number
of vias, and wire length, wi|i ∈ {1, 2, 3, 4} are the weights of the
above metrics. The objective of the agent is to learn a policy to
maximize the reward.

B. The A3C Framework

Expensive query to the environment is a typical challenge in RL,
leading to slow convergence and unaffordable training time. We
adopt an asynchronous advantage actor-critic (A3C) method [22] with
multiple actor-critic (AC) agents running in parallel. As shown in
Fig. 5, each agent has a local copy of the policy and value networks.
It performs actions in its environment to explore the solution space
with a different policy. Different agents update the global network
asynchronously during the training.

Value Network

Policy Network

Network

Agent 1

Agent 2

Agent n

...

Global NetworkAsynchronous  U
pdate

Env 1

Env 2

Env n

Fig. 5: The A3C Framework with asynchronous parallel agents and
global network.

Algorithm 1 Update each A3C actor [22]

Require: Global shared parameter vectors θ, and θv .
1: Initialize thread step counter t← 1
2: Define thread-specific copy of weights θ′, θ′v
3: for T = 1, .., Tmax do
4: dθ ← 0 and dθv ← 0 . Reset gradients.
5: θ′ = θ and θ′v = θv
6: Get state st
7: tstart = t
8: repeat
9: Find action at according to policy π

10: Sort nets according action at
11: Receive reward rt and new state st+1 from router
12: t← t+ 1
13: until terminal st or t− tstart == tmax

14: Return R =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st

15: for i = t− 1, ..., tstart do
16: R← ri + γR
17: dθ ← dθ +∇θ′ log π (ai|si; θ′) (R− V (si; θ

′
v))

18: dθv ← dθv − ∂ (R− V (si; θ
′
v))

2
/∂θ′v

19: end for
20: Perform async. update of θ using dθ and of θv using dθv
21: end for

A3C maintains a policy π (at|st; θ) and an estimate of the value
function V (st; θv), where θ and θv are the global shared parameter
vector. The policy and the value function are updated after every tmax

actions or when a terminal state is reached.
Algorithm 1 illustrates how each actor is updated. After initial-

ization, each agent takes a copy of the global shared network, with
parameters θ′ and θ′v (line 5), and then runs the policy for tmax steps
or until a terminal state is reached. Finally, the agent computes the
gradients in its process (line 17-18) and then updates the global share
network asynchronously.

Network Architecture. We need two models in the A3C frame-
work, a policy network and a value network. The policy network takes
the state s and outputs two arrays (µ, σ2) that represent a probability
distribution over the actions. We pick the action by sampling from
this probability distribution. We denote π(a|s) as the probability of
the sampled action a given state s. The value network outputs the
value function V (s) (the expected return in rewards for state s and
action a), which is used to determine how advantageous it is in a
particular state. Intuitively, the policy network tells us the ordering
scores of the nets and the value network evaluates the scores in the
sense of future rewards.

Fig. 6 plots the network architecture of the two models. We
design the models in a special way so that the policy model can
be used across different designs with different numbers of nets. To



Fig. 6: Architecture of the policy and value networks, where E
denotes the number of nets. The net feature encoder encodes the
features of each net.

decouple the network architecture from the number of nets in design,
we introduce a net-wise feature encoding network that encodes the
features of each net independently. We then concatenate the encoded
features for the policy and value networks. For example, given a
design with E nets, the encoder will encode the RE×16 input feature
tensor into an RE×64 tensor. The policy network takes this tensor and
generates an array of ordering scores for all nets, i.e., RE×2 (mean
and variance of the probability distribution for each net). We then
sample from a normal distribution for each net to get its ordering
score. In our implementation, µ is modeled by a linear layer and σ2

by a softplus layer. The value network flattens the feature tensor and
feeds into a fully connected layer with E×64 hidden units to obtain
a scalar at the output.

The major benefit of such a network architecture is that the policy
network can be shared across different designs, as we essentially
perform net-wise modeling with the ordering score of each net
dependent on its features only. While it is true that using a more
complicated model that correlates the features of multiple nets may
help to explore better policy, current architecture still has enough
expressive power to verify the main idea of using RL in solving
the net ordering problem. We leave the exploration of complicated
models in the future.

C. Mismatch Penalty

General RL framework initializes the neural networks in a random
manner, which may cause slow convergence in our problem, espe-
cially when obtaining the reward from the environment (i.e., running
the router) is very time-consuming. On the other hand, we do have
the prior knowledge to this problem that the default ordering strategy
of using routing region sizes in Dr.CU is a generally good policy
compared with a random one. Incorporating such knowledge has the
potential to speed up training. Hence, Equation (1) is modified to:

r = −Cagent + Ccu −
α

k

k∑
i=1

∆ai
2 (3)

Where ∆a is the difference between the predicted ordering scores
and the sizes of routing regions, α is a user-defined parameter, and k
is the number of nets to be routed. The parameter α is positive only
at the early training steps and then set to zero. The detailed setup
can be found in Section IV. Fig. 7 compares the learning speeds of
the two reward function defining methods. The results show that the
method of adding a mismatch penalty tends to learn faster. As we
only apply the mismatch penalty at the early stage of the training, it
will speed up the training, but not limit the exploration space to the
heuristic ordering strategy used in Dr.CU.
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Fig. 7: Comparison of two reward functions. The curves represent
the moving average reward of the last 1000 episodes (one episode
includes four RRR iterations according to the setting of Dr.CU). We
train the agents for 15 000 episodes and the maximum training time
is within 24 hours. Mismatch penalty enables faster reward increase.

Algorithm 2 Overall routing flow using RL policy

Require: A set of nets N and various design rules for a router
Ensure: Routing solution with optimized solution quality

1: Define M as the maximum number of iterations of RRR.
2: Define S as the set of nets’ ordering scores.
3: i← 0
4: while i < M,N 6= ∅ do
5: i← i+ 1
6: for all net n ∈ N do
7: Extract net features fn
8: end for
9: Use the RL policy π and features F to get the ordering scores

of all nets S
10: batch list B = Scheduler(N,S)
11: for all b ∈ B do
12: Run maze routing, via selection and post-routing in mul-

tiple threads
13: end for
14: Calculate the total cost
15: for all n ∈ N do
16: if n meet constraints then
17: Pop n from N
18: else
19: Rip-up n
20: end if
21: end for
22: end while

D. Overall Routing Flow

Once the policy is obtained, the overall routing flow is summarized
in Algorithm 2. Once obtaining the ordering scores (line 9), we
leverage Dr.CU to finish each RRR iteration (line 10-19). More
specifically, we schedule all batches at the beginning of an RRR
iteration (line 10) by sorting the nets according to the scores and
divide them into batches, such that nets within a batch do not conflict
with each other and can be routed in parallel to reduce the runtime
[16]. If the RRR stopping criteria are not met, the iterations will
continue until the maximum number of iterations is reached.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We define our environment using the OpenAI Gym interface with
Dr.CU 2.0 [17] as the detailed router, and implement our RL agent
network in PyTorch. All the experiments ran on a 64-bit Linux



TABLE II: Characteristics of ISPD 2018 & 2019 Contest Benchmarks

Benchmark #std #net
Die size
(mm2)

Tech. node
(nm)

ISPD18 test1 8879 3153 0.20× 0.19 45
ISPD18 test2 35 913 36 834 0.65× 0.57 45
ISPD18 test3 35 973 36 700 0.99× 0.70 45
ISPD18 test4 72 094 72 401 0.89× 0.61 32
ISPD18 test5 71 954 72 394 0.93× 0.92 32
ISPD18 test6 107 919 107 701 0.86× 0.53 32
ISPD18 test7 179 865 179 863 1.36× 1.33 32
ISPD18 test8 191 987 179 863 1.36× 1.33 32
ISPD18 test9 192 911 178 857 0.91× 0.78 32
ISPD18 test10 290 386 182 000 0.91× 0.87 32
ISPD19 test1 8879 3153 0.148× 0.146 32
ISPD19 test2 72 094 72 410 0.873× 0.589 32
ISPD19 test3 8283 8953 0.195× 0.195 32
ISPD19 test4 146 442 151 612 1.604× 1.554 65
ISPD19 test5 28 920 29 416 0.906× 0.906 65
ISPD19 test6 179 881 179 863 1.358× 1.325 32
ISPD19 test7 359 746 358 720 1.581× 1.517 32
ISPD19 test8 539 611 537 577 1.803× 1.708 32
ISPD19 test9 899 341 895 253 2.006× 2.151 32
ISPD19 test10 899 404 895 253 2.006× 2.151 32

machine with two 20-core Intel Xeon@2.1 GHz CPUs and 64 GB
RAM. We set the discount factor γ = 0.99, coefficient for the
value loss β = 0.25, entropy cost η = 0.001, and learning rate
to 0.001. We also set α = 0.1 for the first 100 training episodes
and reduce to 0 afterwards. A standard non-centered RMSProp is
used as the gradient ascent optimizer. The neural network weights
are initialized randomly. We use eight AC agents to train in parallel,
and the maximum training time is set to 24 hours.

We experiment on the benchmarks from ISPD 2018 and ISPD
2019 Initial Detailed Routing Contests [4], [5]. The detailed infor-
mation of the benchmarks are shown in Table II. We can see that
benchmarks have quite different problem sizes, and technology nodes
(32/45/65 nm). According to Dr.CU [17], the runtime of routing one
of these benchmarks varies from two minutes to five hours. Ideally,
it is expected to train and test a RL model on one technology node
only. However, considering that most designs in Table II are in the
32 nm node, while the ones in 45/65 nm nodes are either too small or
large, we choose a training dataset mixed with designs in 32 nm and
45 nm nodes, and test on the remaining to validate the framework.
To balance the runtime overhead and universality of the generated
model, ISPD18_test3/5/6/7 are selected as benchmarks in the
training dataset and the remaining sixteen as the test dataset. Due to
ISPD18_test7’s big size, it is divided into many benchmarks with
each region containing around 500 nets, and we choose two densest
regions containing 7 and 26 violations to put in the training dataset. In
conclusion, the training dataset contains {two regions clipped from
ISPD18_test7, ISPD18_test3/5/6}. These training bench-
marks have moderate and diverse sizes that can keep reasonable
training time but also complicated enough to represent the real routing
challenges.

B. Model performance

Table III and Table IV summarize the results of the training and
testing datasets. We compare the wirelength, number of vias, DRC
violations, total cost, and runtime between our RL framework and
Dr.CU [17]. The violation values here are a summation of all the
DRC violations mentioned in Equation (1). In the training dataset,
with similar wirelength and number of vias, we can achieve 13%
fewer DRC violations compared with the default policy in Dr.CU.

The total cost only has small improvements. This is because the cost
is dominated by wirelength due to its large scale according to its
definition in the contests. The results on the training dataset indicate
that our RL framework and training techniques are able to learn
good policies from the benchmarks. We also observe around 6 %
runtime overhead, which mostly comes from the feature extraction
and the system integration between the Python-based RL agent and
the C++-based Dr.CU implementation.

In the testing dataset, our policy can achieve an average of 14 %
improvement in violations and 0.7 % in total cost without degradation
in wirelength and number of vias. The results on the testing dataset
demonstrate that the policy learnt from the training dataset can
generalize to unseen benchmarks and achieve high-quality solutions
on average.

One needs to mentioned that on large benchmarks like
ISPD19_test7-10 in 32 nm technology node, the RL pol-
icy can reduce the violations by 40 % to 50 %, which is rather
promising. However, we observe that there are also outliers like
ISPD18_test4 and ISPD19_test4 where the violations in-
crease by 15 % and 46 %, respectively. The results of all the re-
maining benchmarks are either improved or within a comparable
range. We speculate that the two outliers contain special features
not in our training dataset or state space, causing unusual behaviors.
ISPD19_test4 is in 65 nm technology node with 6 metal layers,
while the designs in the training dataset are in 45/32 nm technology
nodes with 9 metal layers. These differences probably reduce the
generalization performance of the RL policy in these two designs.
In addition, ISPD18_test4 has Metal2 obstacles in some of its
standard cells, and ISPD19_test6 has 16 block macros. These
factors are likely to impact the routability of the designs, but not
yet included in the state space. As our RL model is highly flexible,
we can extract more features and conduct targeted training for
specific benchmarks in a technology node to get better policies. This
highlights the possibility of an online learning system to continuously
improve the policy by running more and more benchmarks, which
is worth exploring in the future. In this way, the policy network can
evolve to be more robust and general on unseen benchmarks.

V. CONCLUSION

In this paper, we propose an asynchronous reinforcement learning
framework to search for high-quality net ordering strategies in
detailed routing automatically. We propose highly extensible agent
models, mismatch penalty to enable efficient exploration of good
policies. Experiments on ISPD 2018 & 2019 contest benchmarks
demonstrate that our framework is able to learn an ordering policy
that reduces the number of violations by 14 % on unseen benchmarks,
compared with the state-of-the-art detailed router. The future work
includes improving the agent network architecture to consider the
correlation between multiple nets and expanding the state space to
consider more features.
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