
elfPlace: Electrostatics-based Placement for Large-Scale
Heterogeneous FPGAs

Wuxi Li, Yibo Lin, and David Z. Pan
ECE Department, University of Texas at Austin, Austin, Texas, USA

{wuxi.li, yibolin}@utexas.edu; dpan@ece.utexas.edu

Abstract—elfPlace is a flat nonlinear placement algorithm for large-
scale heterogeneous field-programmable gate arrays (FPGAs). We adopt
the analogy between placement and electrostatic systems initially proposed
by ePlace and extend it to tackle heterogeneous blocks in FPGA designs.
To achieve satisfiable solution quality with fast and robust numerical
convergence, an augmented Lagrangian formulation together with a
preconditioning technique and a normalized subgradient-based multiplier
updating scheme are proposed. Besides pure-wirelength minimization, we
also propose a unified instance area adjustment scheme to simultaneously
optimize routability, pin density, and downstream clustering compatibility.
Our experiments on ISPD 2016 benchmark suite show that elfPlace
outperforms four state-of-the-art FPGA placers UTPlaceF, RippleFPGA,
GPlace3.0, and UTPlaceF-DL by 13.6%, 11.3%, 8.9%, and 7.1%,
respectively, in routed wirelength with competitive runtime.

I. INTRODUCTION

Placement is becoming ever more crucial and challenging due to the
drastic evolution of FPGA architecture in the past decades. Modern
FPGA has thousands of digital signal processing (DSP) and random-
access memory (RAM) blocks and millions of lookup table (LUT)
and flip-flop (FF) instances. These heterogeneous resources are often
exclusively scattered over discrete locations on the FPGA fabric. This
complexity and heterogeneity significantly challenge the effectiveness
and efficiency of modern FPGA placers and which play an important
role in determining the overall FPGA implementation quality.

There are various core FPGA placement algorithms have been
proposed in the literature. Simulated-annealing approaches [1], [2]
iteratively perform probabilistic swapping to progressively improve
placement solutions. Despite that the global optimum can be reached
theoretically, simulated-annealing approaches, in general, suffer from
extremely slow convergence. Min-cut approaches [3] distribute in-
stances by recursive netlist partitioning. In spite of performing well
on small designs, min-cut approaches often produce unacceptably
suboptimal solutions when the design size reaches the scale of millions.
Analytical approaches, on the other hand, formulate the entire place-
ment problem as more sophisticated continuous optimization problems.
Quadratic approaches [4]–[11] approximate the placement objective
using quadratic functions, while nonlinear approaches [12]–[14] use
higher-order ones. Compared with quadratic approaches, nonlinear
approaches often achieve better solution quality due to their even
stronger expressive power.

In contrast to the enormous research endeavor spent on core place-
ment algorithms, there are still very limited works coping with resource
heterogeneity issue in FPGA. Most existing analytical placers only
treat highly-discrete DSP and RAM blocks specially and eliminate
the heterogeneity between LUTs and FFs by either spreading them
together with adjusted areas [8], [9], [11] or simply clustering them
before placement [13]. These approaches are usually highly sensitive
to the heuristics applied, which could hamper the solution quality
and placement robustness. A more recent work [15] proposed a
multi-commodity flow-based algorithm for quadratic placers to spread
heterogeneous instances, and it demonstrated significant improvement
over previous spreading heuristics. However, due to the inherent limita-
tion of quadratic placement, their approach still simplifies spreading as

a movement-minimization problem, which cannot explicitly optimize
wirelength nor preserve the relative order among instances of different
resource types.

There are also works on optimizing other placement objectives to
ease the downstream clustering, legalization, and routing steps. Many
works [8], [9], [11] adopted instance inflation technique to alleviate
routing congestions. Li et al. [16] further considered the impact of
downstream clustering/legalization and adjusted instance areas accord-
ingly during placement to improve the overall solution quality. How-
ever, all these works were originally proposed for quadratic placers,
studies on extending them to more powerful nonlinear placement are
still lacking.

In this paper, we present elfPlace, a general, flat, nonlinear place-
ment algorithm for large-scale heterogeneous FPGAs. elfPlace
adopts the idea of casting placement to electrostatic systems initially
proposed by ePlace family [17], [18] for application-specific inte-
grated circuits (ASICs), and it is enhanced to tackle the FPGA hetero-
geneity issue in a unified and elegant way. Besides the conventional
wirelength objective, elfPlace also performs routability, pin density,
and clustering-aware optimizations to achieve even higher-quality and
smoother design closure. Our major contributions are summarized as
follows.
• We enhance the original ePlace algorithm [17], [18] for ASICs

to deal with heterogeneous resource types in FPGAs.
• We employ augmented Lagrangian method, instead of the mul-

tiplier method used in ePlace, to formulate the nonlinear
placement problem.

• We propose a preconditioning technique to improve the numerical
convergence given the wide spectrum of instance sizes and net
degrees in FPGA designs.

• We propose a normalized subgradient method to update density
penalty multipliers, which control the spreading of different
resource types in a self-adaptive manner.

• We improve the clustering-aware area adjustment technique pro-
posed in [16] and integrate it, together with routability and pin
density optimizations, into elfPlace.

• We demonstrate more than 7% improvement in routed wirelength,
on ISPD 2016 benchmark suite [19], over four cutting-edge
placers with very competitive runtime.

The rest of this paper is organized as follows. Section II introduces
the background knowledge. Section III sketches the overall flow of
elfPlace. Section IV describes the core placement algorithms and
Section V details the routability, pin density, and clustering-aware
optimizations. Section VI shows the experimental results, followed by
the conclusion and future work in Section VII.

II. PRELIMINARIES

A. FPGA Architecture

elfPlace is developed based on Xilinx UltraScale [20], which
is a representative column-based FPGA architecture that has been
also adopted by many other state-of-the-art commercial FPGAs (e.g.,

CLB DSP RAM

(a)

LUTA

LUTB

FFA

FFB

(CK, SR, CEA)

(CK, SR, CEB)

BLE 0 BLE 1 BLE 2 BLE 3

(CKL, SRL, CEAL, CEBL)

BLE 4 BLE 5 BLE 6 BLE 7

(CKH, SRH, CEAH, CEBH)

(b)

Fig. 1: (a) A simplified column-based FPGA architecture. (b) The
configurable logic block (CLB) structure.

Xilinx UltraScale+ series). As shown in Figure 1(a), each column
in this architecture provides one type of logic resources among
configurable logic block (CLB), DSP, and RAM. Columns of different
resource types are usually unevenly interleaved over the FPGA fabric.
Figure 1(b) details the CLB structure in this architecture, where each
CLB consists of 8 basic logic elements (BLEs) and each BLE further
contains 2 LUTs and 2 FFs. The 2 LUTs in the same BLE are subject
to a maximum input pin count constraint. While FFs in the same CLB
are subject to control set constraint. More specifically, as shown in
Figure 1(b), a CLB can be divided into two half CLBs, and each of
which consists of 4 BLEs that share the same clock (CK), set/reset
(SR), and clock enable (CEA/CEB) signals. Therefore, in each half
CLB, FFs must share the same CK/SR and FFs with the same polarity
(FFA/FFB) must further share the same CE (CEA/CEB).

B. The ePlace Algorithm

ePlace [17], [18] is a leading-edge nonlinear global place-
ment algorithm for ASICs. It approximates half-perimeter wirelength
(HPWL),

W (x,y) =
∑
e∈E

We(x,y) =
∑
e∈E

(
max
i,j∈e

|xi − xj |+ max
i,j∈e

|yi − yj |
)
,

(1)
using the weighted-average (WA) model [21], [22],

W̃ex(x,y) =

∑
i∈e xi exp(xi/γ)∑
i∈e exp(xi/γ)

−
∑
i∈e xi exp(−xi/γ)∑
i∈e exp(−xi/γ)

. (2)

Here x and y denote the instance locations, E denotes the set of
nets in the design, and γ is a parameter to control the modeling
smoothness and accuracy. Equation (2) only gives the x-directed
WA model of a net and the total wirelength cost is defined as
W̃ (x,y) =

∑
e∈E(W̃ex(x,y) + W̃ey (x,y)).

The key innovation of ePlace is that it casts the placement density
cost to the potential energy of an electrostatic system. With this
transformation, each instance i is modeled as a positive charge qi
with the quantity proportional to its area. Given the notations defined
in Table I, the electric force Fi = qiξi = −qi∇ψi will guide each
charge i towards the direction of minimizing the total potential energy
Φ,

Φ(x,y) =

∫∫
R

ρ(x, y)ψ(x, y), (x, y) ∈ R. (3)

The unique solution of the electrostatic system is given by Eq. (4).
∇ · ∇ψ(x, y) = −∇ · ξ(x, y) = −ρ(x, y), (x, y) ∈ R, (4a)

n̂ · ∇ψ(x, y) = −n̂ · ξ(x, y) = 0, (x, y) ∈ ∂R, (4b)∫∫
R

ρ(x, y) =

∫∫
R

ψ(x, y) = 0, (x, y) ∈ R, (4c)

TABLE I: Notations used in the electrostatic system

R A finite two-dimensional region
qi The electric charge quantity of charge i
ρ(x, y) The electric charge density at (x, y) ∈ R

ψi, ψ(x, y) The electric potential at charge i and (x, y) ∈ R
ξi, ξ(x, y) The electric field at charge i and (x, y) ∈ R
Φ(x,y) The total electric potential energy of placement (x,y)

where Eq. (4a) is the Poisson’s equation to correlate electric potential,
electric field, and charge density, Eq. (4b) is Neumann boundary
condition (i.e., zero electric field on the boundary of R) to prevent
charges from moving out of R, and Eq. (4c) neutralizes the overall
electric charge and potential to ensure the solution uniqueness of
Eq. (4). ePlace honors the placement density constraints by enforcing
the electrostatic equilibrium state, where electric density is evenly
distributed and Φ(x,y) = 0.
ePlace computes the numerical solution of Eq. (4) using spectral

methods. It divides the placement region into a grid of m×m bins to
construct the charge density map ρ, then the electric potential ψ and
electric field ξ = (ξx, ξy) can be obtained as follows.

au,v =
1

m2

m−1∑
x=0

m−1∑
y=0

ρ(x, y) cos (ωux) cos (ωvy), (5a)

ψ(x, y) =

m−1∑
u=0

m−1∑
v=0

au,v

ω2
u + ω2

v

cos (ωux) cos (ωvy), (5b)

ξx(x, y) =

m−1∑
u=0

m−1∑
v=0

au,vωu

ω2
u + ω2

v

sin (ωux) cos (ωvy), (5c)

ξy(x, y) =

m−1∑
u=0

m−1∑
v=0

au,vωv

ω2
u + ω2

v

cos (ωux) sin (ωvy). (5d)

Here x and y are bin indexes, u and v denote frequency indexes from
0 to m − 1, and ωu = 2πu

m
and ωv = 2πv

m
are the frequencies of

sin / cos wave functions. Equation (5) can be efficiently computed
using discrete cosine transform (DCT) and its inverse (IDCT).

Finally, with both wirelength cost W̃ (x,y) and density penalty
Φ(x,y) well defined, ePlace then iteratively solves the following
unconstrained nonlinear optimization problem using multiplier method,

min
x,y

f(x,y) = W̃ (x,y) + λΦ(x,y), (6)

where λ is the density penalty multiplier to progressively enforce the
density constraint.

III. ELFPLACE OVERVIEW

One major challenge of FPGA placement is heterogeneity handling.
elfPlace tackles this problem by maintaining separate electrostatic
systems for different resource types, including LUT, FF, DSP, and
RAM. The notations used in elfPlace are given in Table II.

TABLE II: Notations used in elfPlace

S The resource type set {LUT, FF, DSP, RAM}
V , Vs The instance set and its subset with resource type s
VP, VP

s The physical instance set and its subset of resource type s
VF, VF

s The filler instance set and its subset of resource type s
Ai The area of instance i
Bs The bin grid for resource type s ∈ S
AP
b The physical instance area in bin b

Cb The resource capacity in bin b
λ The density multiplier vector (λLUT, λFF, λDSP, λRAM)T

Φ The potential energy vector (ΦLUT,ΦFF,ΦDSP,ΦRAM)T

Figure 2 illustrates the overall flow of elfPlace. Different from
a typical initial placement that minimizes wirelength by quadratic

Rand. Initial
Placement

Rand. Filler
Insertion

λ Initial-
ization

Gradient
Computation

Nesterov’s
Optimization

λ Update

DSP/RAM
Legalization

max(OLUT, OFF) < 15%?

Previous ∆A < 1%?

max(OLUT, OFF) < 10% &

max(ODSP, ORAM) < 20%?

DSP/RAM
are Legalized?

Instance
Area Adjust.

Decrease λ

Clustering
LG/DP

Y

N

Y

N

Y

N

N Y

Fig. 2: The overall flow of elfPlace.

programming, elfPlace starts from a random initial placement,
which has been observed to achieve nearly the same quality with
considerable runtime reduction [23]. In the random initial placement,
all movable instances are first placed at the centroid of fixed pins and
an extra Gaussian noise perturbation is injected with standard deviation
equal to 0.1% of the width and height of the placement region.

After the initial placement, filler instances are created and inserted
independently for each resource type. Fillers are needed to pad whites-
paces and produce compact placement solutions. For each resource
type s ∈ S with the bin grid Bs, its total filler area is computed
as
∑
b∈Bs Cb −

∑
i∈VP

s
Ai. In our experiments, LUT/FF fillers are

set to be squares with 1/8 CLB area, and DSP and RAM fillers
are set to be rectangles with dimensions 1.0 × 2.5 and 1.0 × 5.0
(CLB width), respectively, based on the FPGA architecture. For each
resource type s, fillers are randomly inserted based on the resource
capacity distribution. More specifically, elfPlace first randomly
distributes fillers of resource type s into bins based on the probabilities
Cb/

∑
b∈Bs Cb, and their final locations are then uniformly drawn

within bins. By this insertion strategy, fillers can start with relatively
low potential energy and it improves the convergence and stability of
the later placement optimization.

Based on the initial placement and filler insertion, elfPlace
initializes the density multiplier vector λ = (λLUT, λFF, λDSP, λRAM)T

and then enters the core placement optimization phase. In each place-
ment iteration, the gradient of a wirelength-density co-optimization
problem is computed and fed to a Nesterov’s optimizer [17] to take a
descent step. After that, λ is updated to balance the spreading efforts
on different resource types and universally emphasize slightly more
density penalties. When both LUT and FF overflows (OLUT and OFF)
are reduced down to 15%, elfPlace adjusts instance areas with the
consideration of routability, pin density, and downstream clustering
compatibility (i.e., LUT input pin constraint and FF control set con-
straint described in Section II-A). After the instance area adjustment,
the nearly-equilibrated electrostatic states are likely to be damaged,
therefore, elfPlace reduces the density multipliers λ in this case to
recover the quality again. This area adjustment step is performed each
time that LUT/FF converge to max(OLUT, OFF) < 15% until the total
area change is less than 1%. The overflow of each resource type s is
given in Eq. (7).

Os =

∑
b∈Bs max(AP

b − Cb, 0)∑
b∈Bs A

P
b

, ∀s ∈ S. (7)

Once the instance area converges and the overlaps are small
enough for all resource types, i.e., max(OLUT, OFF) < 10% and
max(ODSP, ORAM) < 20%, elfPlace legalizes and fixes DSP and
RAM blocks using the minimum-cost flow approach like in [8], [9].
Here we set a larger overflow target for DSP/RAM due to their
much higher discreteness compared with LUT/FF. After that, LUT/FF

placements are further optimized until they both meet the overflow
target again (max(OLUT, OFF) < 10%). Finally, elfPlace adopts the
clustering, legalization, and detailed placement approaches proposed
in [16] to produce the final legal solution.

IV. CORE PLACEMENT ALGORITHMS

A. The Augmented Lagrangian Formulation

With density constraint for each resource type modeled as a separate
electrostatic system, elfPlace solves the minimization problem
defined as follows.

min
x,y

W̃ (x,y) s.t. Φs(x,y) = 0, ∀s ∈ S. (8)

However, unlike ePlace solves the density constrained placement
problem using the multiplier method given in Eq. (6), elfPlace
uses the augmented Lagrangian method (ALM), as shown in Eq. (9),
instead.

min
x,y

f(x,y) = W̃ (x,y) +
∑
s∈S

λs
(

Φs(x,y) +
cs
2

Φs(x,y)2
)
. (9)

Here λs and Φs are density multiplier and electric potential energy
for each resource type s ∈ S = {LUT, FF, DSP, RAM}, and cs is a
parameter to control the relative weight of the quadratic penalty term
Φs(x,y)2. Slightly different from the typical ALM formulation where
Φ(x,y)2 has weight independent to λ, the magnitude of Φ(x,y)2 is
also determined by λ in Eq. (9). This is to better control the overall
effort on honoring the density constraints and make elfPlace less
sensitive to the initial placement.

The ALM formulation in Eq. (9) can be viewed as a mixture of
the multiplier method and the penalty method. The motivation is that,
when the resource type s has high potential energy Φs(x,y), we
want the penalty term cs

2
Φs(x,y)2 to dominate (i.e., cs

2
Φs(x,y)2 �

Φs(x,y)) and make Eq. (9) become the penalty method as shown
in Eq. (10). Since in this case, the resource type s still has lots of
overlaps, using the penalty method can enhance the convexity of the
objective function and improve the convergence.

min
x,y

fPM(x,y) = W̃ (x,y) +
∑
s∈S

λs
cs
2

Φs(x,y)2. (10)

On the other hand, when the resource type s converges to a relatively
small potential energy Φs(x,y), we want the Φs(x,y) term to
dominate (i.e., Φs(x,y) � cs

2
Φs(x,y)2) and make Eq. (9) become

the multiplier method as shown in Eq. (11). In this case, the overlaps
of the resource type s are already relatively small and using the
multiplier method can continue the optimization without suffering the
ill-conditioning problem associated with the penalty method.

min
x,y

fMM(x,y) = W̃ (x,y) +
∑
s∈S

λsΦs(x,y). (11)

The key of achieving this penalty method and multiplier method
trade-off is to properly set the value of cs, ∀s ∈ S. We observe
that, regardless of the design size, the final potential energy always
converges to 10−5 to 10−7 of the initial one. Therefore, we define cs
as follows.

cs =
β

Φs(x(0),y(0))
, ∀s ∈ S, (12)

where β is set to 2 × 103 in our experiments and Φs(x
(0),y(0))

is the potential energy of the random initial placement (described in
Section III). Under this setting, we will have cs

2
Φs(x,y)2 = Φs(x,y)

when Φs(x,y) = 10−3 Φs(x
(0),y(0)). Then, the penalty method can

smoothly transit to multiplier method at about the halfway of the final
convergence. The experimental result in Section VI-B shows that our
ALM formulation could improve the final routed wirelength by 1.2%
compared with the original multiplier method adopted in ePlace.

B. Gradient Computation and Preconditioning

The x-directed gradient of our objective function defined in Eq. (9)
can be derived as shown in Eq. (13). For brevity, only x-direction will
be discussed in the rest of this section and similar conclusions are
applicable to y-direction as well.

∂f(x,y)

∂xi
=
∂W̃ (x,y)

∂xi
+ λs

(∂Φs(x,y)

∂xi
+ csΦs(x,y)

∂Φs(x,y)

∂xi

)
=
∂W̃ (x,y)

∂xi
− λsqiξxi

(
1 + csΦs(x,y)

)
, ∀i ∈ Vs.

(13)

Although our ALM-based density penalty term is initially motivated
by mathematics, there are still physical intuitions behind its gradient.
By the nature of electrostatics, the electric force qiξi on each charge
i will guide the charge towards a nearby low-potential well and
this is reflected by the λsqiξxi term in Eq. (13). Besides, the extra
λsqiξxicsΦs(x,y) term further accelerates the charge movement for
resource types with high potential energies, which often correspond to
relatively large cell overlaps in the placement problem.

The gradient defined in Eq. (13) will be preconditioned before
being finally fed to the optimizer. Preconditioning can make the
local curvature of the objective function become nearly spherical, and
hence, alleviate the ill-conditioning problem and improve the numerical
convergence and stability. The most commonly used preconditioner is
the inverse of the Hessian matrix Hf of the objective function f , and
the preconditioned gradient H−1

f ∇f , instead of the original ∇f , will
be used as the (opposite of) descent direction. However, due to the scale
of placement problem and the complexity of our objective function,
it is impractical to compute the exact Hessian. Instead, elfPlace
adopts the much cheaper Jacobi preconditioner to approximate the
actual Hessian.

The x-directed Jacobi preconditioner is a diagonal matrix with the
i-th diagonal entry equal to ∂2f

∂x2i
. By Eq. (13), we have

∂2f(x,y)

∂x2
i

=
∂2W̃ (x,y)

∂x2
i

− λsqi
(∂ξxi
∂xi

(
1 + csΦ(x,y)

)
− csξ2

xi

)
.

(14)
The closed-form expression of ∂2W̃ (x,y)

∂x2i
is too expensive to compute

in practice, therefore, we approximate it using

∂2W̃ (x,y)

∂x2
i

∼
∑
e∈Ei

1

|e| − 1
, (15)

where Ei denotes the set of nets incident to instance i and |e| denotes
the degree of the net e. The second-order derivative of the density term
is even more complicated. Although the numerical solution of

∂ξxi
∂xi

can be computed again through spectral method based on Eq. (5), we
choose to only keep the λsqi term for the sake of efficiency.

Therefore, the overall x-directed second-order derivative of the
objective is approximated as follows.

∂2f(x,y)

∂x2
i

∼ hxi = max
(∑
e∈Ei

1

|e| − 1
+λsqi, 1

)
,∀i ∈ Vs, (16)

where the max(·, 1) is to avoid extremely small hxi for filler instances,
who do not have incident nets, when λs is very small. Finally, the
preconditioned gradient,

H−1
f ∇f(x,y) =

(1

hx1

∂f(x,y)

∂x1
,

1

hy1

∂f(x,y)

∂y1
, · · ·

)T
, (17)

will be fed to a Nesterov’s optimizer [24] to iteratively update
the placement solution. Since in FPGA designs, net degrees (e.g.,
local signal nets and global clock nets) and instance pin counts and
sizes (e.g., small LUT/FF instances and large DSP/RAM blocks) can

vary significantly, this wirelength preconditioner is essential to the
numerical convergence of our optimization. The experimental result
in Section VI-B shows that elfPlace can barely converge without
our preconditioning technique.

C. Density Multipliers Setting

One important thing we have not yet discussed is the setting of
density multipliers λ, which control the spreading efforts on different
resource types. Since there is often heavy connectivity among different
resource types, the spreading process must be capable of achieving
target densities for all resource types while not ruining the natural
physical clusters consisting of heterogeneous instances.

In elfPlace, we set the initial density multipliers λ(0) as follows.

λ(0) = η
‖∇W̃ (x(0),y(0))‖1∑

i∈V qi‖ξ(0)
i ‖1

(
1, 1, · · · , 1

)T
, (18)

where (x(0),y(0)) represent the initial placement, ξ(0)
i denotes the

initial electric field at instance i, η is a weighting parameter, and ‖ ·‖1
denotes the L1-norm of a vector. In order to emphasize the wirelength
optimization in early iterations, η is set to 10−4 in our experiments.
Note that λ(0) is an |S|-dimensional vector, where |S| is the number
of resource types, and by Eq. (18), we start from spreading all resource
types with the same weight.

Classical optimization approaches use the subgradient method to
update λ [25]. According to Eq. (9), the subgradient of λ is defined
as

∇subλ =
(
· · · ,Φs(x,y) +

cs
2

Φs(x,y)2, · · ·
)T
, s ∈ S. (19)

The reason why ∇subλ is called subgradient instead of gradient is that
the dual function, l(λ) = max f(x,y)|λ, associated with Eq. (9) is
not smooth but piecewise linear [25].

However, in our placement problem, the potential energies of
different resource types, Φs, can differ by order of magnitudes. The
very sparse DSP/RAM blocks usually have significantly smaller total
potential energies compared with LUT/FF instances. As a result, using
the subgradient in Eq. (19) to guide the λ updating can lead to severely
ill-conditioned problems. To mitigate this issue, the normalized sub-
gradient defined in Eq. (20) is used instead in elfPlace.

∇̂subλ =
(
· · · , 1

Φs(x(0),y(0))

(
Φs(x,y) +

cs
2

Φs(x,y)2
)
, · · ·

)T
,

=
(
· · · , Φ̂s(x,y) +

β

2
Φ̂s(x,y)2, · · ·

)T
, s ∈ S.

(20)

Here we use Φ̂s(x,y) = Φs(x,y)/Φs(x
(0),y(0)) to denote the

potential energy normalized by the potential energy of the initial
placement and cs is replaced by its definition given in Eq. (12). After
this normalization, each Φ̂s(x,y) is approximately upper bounded
by 1, which can more accurately reflect the relative level of density
violation for each resource type.

Given the λ(k) and the step size t(k) at iteration k, we compute
λ(k+1) by Eq. (21) and our step size updating scheme is further
presented by Eq. (22).

λ(k+1) = λ(k) + t(k) ∇̂subλ
(k)

‖∇̂subλ(k)‖2
. (21)

t(k) =

αH − 1, for k = 0,

t(k−1)

(
log(β‖Φ̂(k)‖2+1)

1+log(β‖Φ̂(k)‖2+1)

(
αH − αL

)
+ αL

)
, for k > 0.

(22)
Here β is the same weighting parameter used in Eq. (12) and the
parameter pair (αL, αH) defines the range of increasing rate of the

step size. The motivation of our step size updating scheme shown in
Eq. (22) is that the quadratic density penalty term often decays much
faster than the linear penalty term in our objective Eq. (9). Therefore,
we incline to increase the step size faster when the quadratic penalty
term dominates (i.e., β‖Φ̂(k)‖2 � 1). As the instance overlaps become
smaller, the linear penalty term will start to take over and a slower
increasing rate will be used in this case. In our experiments, we set
(αL, αH) to (1.05, 1.06). It should be noted that, although 1.05 ≈ 1.06,
their high-order exponents can differ by order of magnitudes (e.g.,
(1.06/1.05)500 > 100).

Figure 3 illustrates the heterogeneous spreading process in
elfPlace. As can be seen from Fig. 3(a), our λ updating scheme
can greatly preserve those natural physical clusters consisting of
heterogeneous instances. The placement right before DSP/RAM le-
galization shown in Fig. 3(b) further demonstrates the capability of
elfPlace to achieve nearly overlap-free solutions even for highly-
discrete DSP/RAM blocks without explicit legalization.

(a)

(b)

Fig. 3: The distributions of physical LUT (green), FF (blue), DSP
(red), and RAM (orange) instances in (a) an intermediate placement
and (b) the placement right before DSP/RAM legalization based on
FPGA-10. Both figures are rotated by 90 degrees.

V. INSTANCE AREA ADJUSTMENT

Besides minimizing wirelength, elfPlace is also capable of
tackling other practical issues in real-world designs, such as routability,
pin density, and clustering compatibility. Routability and pin den-
sity optimizations have always been the fundamental requirements
of placement to achieve routing-friendly solutions. While clustering
compatibility optimization, which was recently discussed in [16], is to
further consider the effect of downstream clustering (also referred as
packing) early in the placement stage. It turns out that all these issues
can be addressed by properly adjusting instance areas on top of our
wirelength-driven placement. Therefore, in this section, we propose a
unified instance area adjustment approach to simultaneously optimize
all of them.

A. The Adjustment Scheme

Figure 4 sketches the algorithm flow of our instance area adjustment.
In the beginning, for each physical instance i, we first compute three
independent instance areas one each is optimized for routability (Aro

i),
pin density (Apo

i), and clustering compatibility (Aco
i). Let Ai denote

Compute
Routability-

Optimized Area
Aro

Compute
Pin Density-

Optimized Area
Apo

Compute
Clustering-

Optimized Area
Aco

Adjust Physical
and Filler

Instance Areas

Adjust Density
Multipliers λ

Fig. 4: The area adjustment flow in elfPlace to simultaneously opti-
mize routability, pin density, and downstream clustering compatibility.

the area of instance i before the adjustment, we define the target area
increase of each physical instance i as follows.

∆Ai = max(Aro
i , A

po
i , A

co
i , Ai)−Ai, ∀i ∈ VP. (23)

In order to prevent the total adjusted area from exceeding the total
capacity of each resource type, all ∆Ai need to be further scaled by
the following factor according to the resource type s of i.

τs = min(

∑
i∈VF

s
Ai∑

i∈VP
s

∆Ai
, 1), ∀s ∈ S, (24)

where VF
s denotes the set of filler instances for resource type s

and
∑
i∈VF

s
Ai is the total filler area of resource type s before the

adjustment. Basically, scaling all ∆Ai by Eq. (24) guarantees that
the total increased physical instance area is no greater than the total
available filler area for each resource type. The final adjusted area A′i
of each physical instance i is then given by Eq. (25).

A′i = Ai + τs∆Ai,∀i ∈ VP
s , ∀s ∈ S. (25)

Recall that elfPlace relies on electrostatic neutrality to meet the
density constraints Φ = 0, therefore, we also need to downsize filler
instances to maintain the total positive charge quantity unchanged. The
final adjusted area A′i of each filler instance i is then defined as follows.

A′i =

∑
j∈Vs Aj −

∑
j∈VP

s
A′j

|VF
s |

, ∀i ∈ VF
s , ∀s ∈ S. (26)

Our area adjustment step is physically equivalent to redistributing
charge density with the overall electrostatic neutrality preserved.
After this redistribution, however, the previously nearly-equilibrated
electrostatic states are likely to be ruined. In addition, the adjustment
magnitudes and the potential energy increases can be highly uneven
across different resource types (e.g., FFs can vary more than LUTs due
to the control set rules). Therefore, we reset the density multipliers λ
by Eq. (27) to adapt and recover from this perturbation.

λ′ = η′
‖∇W̃‖1

〈(· · · ,∑i∈Vs qi‖ξi‖1, · · ·)T , ∇̂subλ〉
∇̂subλ, (27)

where 〈·, ·〉 denotes the inner product of two vectors,
(· · · ,∑i∈Vs qi‖ξi‖1, · · ·)T is an |S|-dimensional vector that
contains the L1-norm of the density gradient for each resource type
s ∈ S, ∇̂subλ denotes the normalized subgradient of λ, as defined in
Eq. (20), after the area adjustment, and η′ is a weighting parameter
set to 0.1 in our experiments. Equation (27) essentially redirects λ to
its current normalized subgradient ∇̂subλ with the scale determined
by the gradient norm ratio between wirelength and density. In this
way, both the direction and scale of the adjusted λ′ can adapt the
perturbed electrostatic system and help to better heal the placement
quality. Besides, in order to smooth the placement convergence, the

density multiplier step size is also adjusted by Eq. (28), where αH is
the same parameter as used in Eq. (22).

t′ = (αH − 1) ‖λ′‖2. (28)

0 200 400 600 800 1,000

10−6

10−5

10−4

10−3

10−2

10−1

100

Placement Iteration

N
o
rm

.
P

o
te

n
ti

a
l

E
n

er
g
y

Φ̂
s

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Inst.
Area

Adjust.

N
o
rm

.
H

P
W

L

Φ̂LUT Φ̂FF Φ̂DSP Φ̂RAM Norm. HPWL

Fig. 5: The normalized potential energy Φ̂ and HPWL at different
placement iterations on FPGA-10.

Figure 5 illustrates the impact of instance area adjustment on the
placement convergence process. In this example, the adjustment is
performed twice at iteration 600 and 887, where the potential energies
increase sharply. By using our adaptive density multiplier and step
size resetting techniques, the wirelength can be gradually healed and
smoothly converges to a nearly overlap-free solution.

B. The Optimized Area Computation

As we discussed in Section V-A, for each physical instance i,
elfPlace computes three independent areas that are optimized for
routability (Aro

i), pin density (Apo
i), and clustering compatibility (Aco

i),
respectively.

1) The Routability-Optimized Area: In order to compute the
routability-optimized areas, elfPlace first performs a RISA/RUDY-
based [26], [27] routing congestion estimation. Let uh

i and uv
i denote

the resulting horizontal and vertical routing utilizations at instance
i, then we compute the routability-optimized area of each physical
instance i using Eq. (29), where the 2 is an empirical constant to
avoid overinflation.

Aro
i = Ai min

(
max

(
uh
i , u

v
i

)2
, 2
)
,∀i ∈ VP, (29)

2) The Pin Density-Optimized Area: Similarly, elfPlace also
estimates pin density by dividing the placement region into bins.
Let cp denote the unit-area pin capacity (determined by the FPGA
architecture). For each instance i, if we denote its local pin density
by up

i and denote its pin count as |Pi|, then its pin density-optimized
area is defined by Eq. (30), where the 1.5 is an empirical constant to
avoid overinflation.

Apo
i =

|Pi|
cp min

(
up
i , 1.5

)
, ∀i ∈ VP. (30)

Different from the routability-optimized area Aro
i , the pin density-

optimized area Apo
i here is independent to the current instance area Ai.

This is because, compared with routing utilization, local pin density
is usually very noisy and sensitive to the placement. If Apo

i is self-
accumulated as in Eq. (29), it can be excessively over-inflated.

3) The Clustering Compatibility-Optimized Area: One special chal-
lenge of flat FPGA placement is that we can barely know the correct
LUT and FF areas before the actual downstream clustering solution
is formed. Recall the CLB architecture described in Section II-A, if
a LUT/FF is incompatible with most of its physical neighbors (e.g.,
violating the pin count and control set rules), then it tends to occupy a
significant portion of a CLB alone. For such an instance, we intuitively
should assign it a larger area.

To estimate the instance areas in a feasible clustering solution, we
first assume the instance movement (∆x,∆y) during the downstream
clustering/legalization approximately follows Gaussian distribution.
That is, we have ∆xi ∼ N (0, σ) and ∆yi ∼ N (0, σ), where σ is the
assumed standard deviation of the movement. We empirically set σ
to
√

10−5 × |VP|. Then, we divide the placement region into square
bins with bin length equal to σ, and for each LUT/FF instance i, we
conduct the area estimation using the bin window Bi, of size 5×5 bins,
that is centered at (xi, yi). Let (Bxl

i ,Byl
i ,Bxh

i ,Byh
i) denote the bounding

box of the estimation window Bi of instance i, the expectation of any
instance j falling into Bi then can be defined as

IEj∈Bi = Pσ(Bxl
i ≤ xj < Bxh

i) Pσ(Byl
i ≤ yj < Byh

i), (31)

where Pσ(a ≤ µ < b) represents the total probability of the Gaussian
distribution N (µ, σ) in the range [a, b).

For each LUT instance i, let VP
i and VP

i denote the sets of LUTs that
can and cannot be fitted into the same BLE with i (see Section II-A),
respectively, then we define the clustering compatibility-optimized area
for LUT i as follows.

Aco
i =

1

16

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
+

1

8

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
, ∀i ∈ VP

LUT. (32)

Equation (32) essentially is a weighted average of the compatible and
incompatible expectations for i within the window Bi. Each Aco

i , ∀i ∈
VP

LUT, is in the range [1/16, 1/8] based on our target architecture. The
same idea is also adopted in [16] and the proposed Equation (32) is
its enhancement with Gaussian smoothing.

The estimation for FFs are more subtle due to the complicated
control set rules (see Section II-A). For an FF instance i, let θi denote
its control set (CK, SR,CE) and let Θi denote the set of control sets
that have the same CK and SR with θi. If we use ni,θ to denote the
number of FFs in Bi with the control set θ, then the area of FF i in
the tightest clustering solution formed within Bi can be estimated by
Eq. (33), as given in [16].

Aco-disc
i =

1

2ni,θi

dni,θi/4e∑
θ∈Θi
dni,θ/4e

⌈∑
θ∈Θi
dni,θ/4e
2

⌉
, ∀i ∈ VP

FF.

(33)
We omit the derivation of Eq. (33) due to the page limit. However,
it still can be seen that Eq. (33) involves many ceiling operations
(d·e), which make Aco-disc

i discontinuous (disc) and very sensitive to
the estimation window Bi and the placement solution.

In elfPlace, the much smoother Eq. (34), instead of Eq. (33), is
used as the clustering compatibility-optimized areas for FF instances.

Aco
i =

1

2IEi,θi

sdc(IEi,θi , 4)∑
θ∈Θi

sdc(IEi,θ, 4)
sdc

(∑
θ∈Θi

sdc(IEi,θ, 4), 2
)
, ∀i ∈ VP

FF.

(34)
It has two notable improvements over Eq. (33): (1) it replaces each
FF count ni,θ in Eq. (33) with the smoother expectation IEi,θ , which
denotes the expected number (nonintegral in general) of FFs in window
Bi with the control set θ; (2) it replaces each division-ceiling operation
in Eq. (33) with the soft division-ceiling function sdc(x, d) defined
in Eq. (35).

sdc(x, d) =

{
x+ (1− d)

⌊
x/d

⌋
, for x/d− bx/dc < 1/d,⌈

x/d
⌉
, otherwise.

(35)

The plots of sdc(x, d) function w.r.t. x/d are illustrated in Fig. 6. It
smoothes dx/de by linearizing the beginning 1/d of each sharp step.
As d approaches to ∞, sdc(x, d) behaves more like dx/de.

0 1 2 3 4

0

1

2

3

4

x/d

s
d
c
(x
,d
)

d = 2

d = 4

d = 8

d→ ∞

Fig. 6: The plots of the soft division-ceiling function sdc(x, d) w.r.t.
x/d.

VI. EXPERIMENTAL RESULTS

We implement elfPlace in C++ and perform experiments on
a Linux machine running with Intel Core i9-7900 CPUs (3.30 GHz
and 10 cores) and 128 GB RAM. Careful parallelization is applied
throughout the whole framework with the support of OpenMP 4.0 [28].
The ISPD 2016 FPGA placement contest benchmark suite [19] released
by Xilinx is adopted to demonstrate the effectiveness and efficiency of
elfPlace 1. Routed wirelength reported by Xilinx Vivado v2015.4
is used to evaluate the placement quality. The characteristics of the
benchmarks are listed in Table III.

TABLE III: ISPD 2016 Contest Benchmarks Statistics

Design #LUT #FF #RAM #DSP #Ctrl Set
FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281
Resources 538K 1075K 1728 768 -

A. Comparison with State-of-the-Art Placers

We compare elfPlace with four state-of-the-art analyti-
cal FPGA placers, namely, UTPlaceF [8], RippleFPGA [9],
GPlace3.0 [11], and UTPlaceF-DL [16]. The executables are
obtained from their authors and executed on our machine. Since only
UTPlaceF-DL and elfPlace support multi-threading, UTPlaceF,
RippleFPGA, and GPlace3.0 are single-thread executed, while
UTPlaceF-DL and elfPlace are executed with both a single thread
and 10 threads.

Table IV shows the comparison results. Metrics “WL” and “RT”
represent the routed wirelength in thousands and runtime in seconds,
while “WLR” and “RTR” represent the routed wirelength and runtime
ratios normalized to the 10-threaded elfPlace. It can be seen that
elfPlace achieves the best routed wirelength on eleven out of twelve
designs and outperforms UTPlaceF, RippleFPGA, GPlace3.0,
and UTPlaceF-DL by, on average, 13.6%, 11.3%, 8.9%, and 7.1%,
respectively. It is worthwhile to note that these wirelength improve-
ments are fairly consistent from small designs to large ones. With only
a single thread, elfPlace demonstrates similar runtime compared
with UTPlaceF, GPlace3.0, and UTPlaceF-DL, while it runs

1As this work focuses on core placement algorithms, the ISPD 2017
benchmark suite for clock-aware placement is not adopted in our experiments.

more than 3× slower than the fastest RippleFPGA. By exploiting
10 threads, elfPlace achieves 3.51× speedup and shows similar
runtime with RippleFPGA. Among all twelve designs, the 10-
threaded elfPlace produces the fastest runtime on the seven largest
designs, which evidences its good scalability.

B. Individual Technique Validation

Table V further validates the effectiveness of each proposed tech-
nique. The column “w/ MM in Eq. (11)” shows the results of using the
multiplier method (MM) in Eq. (11), which is adopted by ePlace,
instead of our proposed augmented Lagrangian method (ALM) in
Eq. (9). To make a fair comparison, we set the step size of the MM
in a way that the MM and our ALM can converge within about
the same amount of time. With this setup, our proposed ALM-based
formulation can produce an average of 1.2% better routed wirelength
compared with the MM-based formulation. The column “w/o Precond.”
shows the results without the preconditioning in Eq. (16) and it
can barely converge due to the wide spectrum of instance sizes and
net degrees in FPGA designs. The column “w/ ePlace Precond.”
further gives the results of replacing our preconditioner in Eq. (16)
with the one proposed in ePlace [24]. Although the ePlace’s
preconditioning technique can achieve similar placement quality and
efficiency, it fails to converge on two benchmarks in our experiments.
Finally, the column “w/ Aco

i in [16]” presents the results of using
the clustering compatibility-optimized area proposed in [16] instead
of our Gaussian and sdc-smoothed Eq. (32) and Eq. (34). With our
smoothing techniques, elfPlace can converge 15% faster while
maintaining essentially the same solution quality.

C. Runtime Breakdown

Figure 7 shows the runtime breakdown of the 10-threaded
elfPlace based on FPGA-12. The most time-consuming part is to
compute the wirelength gradient ∇W̃ , which takes 34.4% of the total
runtime. The density gradient computation is relatively efficient and it
consumes 7.5% of the total runtime on constructing the density maps
ρ and 1.4% of the total runtime on computing the electric potential ψ
and electric field ξ by Eq. (5). The parameter updating, which involves
the computation of wirelength, overflow, potential energy Φ, etc., takes
7.3% of the total runtime. The clustering, legalization, and detailed
placement algorithms adopted from [16] consumes total 37.5% of the
runtime. While the remaining 11.9% of the runtime is spent on parsing,
placement initialization, and the rest of runtime-insignificant tasks.

34.4%

Compute ∇W̃

7.5%

Compute ρ

1.4%

Compute ψ and ξ

7.3%

Update Parameters

21.5%

Clustering/LG

16%

DP

11.9%

Others

Fig. 7: The runtime breakdown of the 10-threaded elfPlace based
on FPGA-12.

VII. CONCLUSION

In this paper, we have presented elfPlace, a general, flat,
nonlinear placement algorithm for large-scale heterogeneous FPGAs.
elfPlace resolves the traditional FPGA heterogeneity issue by cast-
ing the density constraints of heterogeneous resource types to separate
but unified electrostatic systems. An augmented Lagrangian formu-
lation together with a preconditioning technique and a normalized

TABLE IV: Routed Wirelength (WL in 103) and Placement Runtime (RT in seconds) Comparison with Other State-of-the-Art Placers

Design
UTPlaceF [8] RippleFPGA [9] GPlace3.0 [11] UTPlaceF-DL [16] elfPlace

WL WLR 1-thread WL WLR 1-thread WL WLR 1-thread WL WLR 1-thread 10-thread WL WLR 1-thread 10-thread
RT RTR RT RTR RT RTR RT RTR RT RTR RT RTR RT RTR

FPGA-01 357 1.128 144 2.25 353 1.115 25 0.39 356 1.125 70 1.09 340 1.076 154 2.41 50 0.78 316 1.000 226 3.53 64 1.00
FPGA-02 642 1.106 244 2.02 645 1.112 47 0.39 644 1.110 133 1.10 653 1.125 273 2.26 90 0.74 580 1.000 429 3.55 121 1.00
FPGA-03 3215 1.123 672 3.26 3262 1.140 168 0.82 3101 1.084 502 2.44 3139 1.097 700 3.40 248 1.20 2862 1.000 732 3.55 206 1.00
FPGA-04 5410 1.117 667 3.06 5510 1.137 188 0.86 5403 1.115 537 2.46 5331 1.101 802 3.68 278 1.28 4844 1.000 781 3.58 218 1.00
FPGA-05 9660 1.048 841 3.61 9969 1.082 229 0.98 10507 1.140 639 2.74 10045 1.090 889 3.82 302 1.30 9215 1.000 845 3.63 233 1.00
FPGA-06 6488 1.133 1387 3.91 6180 1.079 356 1.00 5820 1.016 1147 3.23 5801 1.013 1128 3.18 424 1.19 5727 1.000 1124 3.17 355 1.00
FPGA-07 10105 1.155 1438 4.27 9640 1.102 394 1.17 9509 1.087 1428 4.24 9356 1.069 1277 3.79 479 1.42 8749 1.000 1092 3.24 337 1.00
FPGA-08 7879 1.028 1419 4.62 8157 1.065 354 1.15 8126 1.061 1575 5.13 8298 1.083 1478 4.81 497 1.62 7661 1.000 1214 3.95 307 1.00
FPGA-09 12369 1.161 2043 5.20 12305 1.155 485 1.23 11711 1.099 1938 4.93 11633 1.092 1724 4.39 622 1.58 10657 1.000 1359 3.46 393 1.00
FPGA-10 8795 1.452 2526 5.54 7140 1.178 547 1.20 6836 1.128 1797 3.94 6317 1.043 1467 3.22 583 1.28 6058 1.000 1445 3.17 456 1.00
FPGA-11 10196 0.978 1719 4.70 11023 1.058 447 1.22 10260 0.985 1786 4.88 10476 1.005 1687 4.61 640 1.75 10421 1.000 1367 3.73 366 1.00
FPGA-12 7755 1.197 2455 5.18 7363 1.136 549 1.16 7224 1.115 2296 4.84 6835 1.055 1926 4.06 771 1.63 6480 1.000 1714 3.62 474 1.00

Norm. - 1.136 - 3.97 - 1.113 - 0.96 - 1.089 - 3.42 - 1.071 - 3.63 - 1.31 - 1.000 - 3.51 - 1.00

TABLE V: Normalized Routed Wirelength and Placement Runtime Com-
parison for Individual Technique Validation

Design
w/ MM w/o w/ ePlace w/ Aco

i elfPlacein Eq. (11) Precond. Precond. in [16]
WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR

FPGA-01 1.021 1.02 1.009 1.01 1.006 1.02 1.004 1.12 1.000 1.00
FPGA-02 1.010 0.97 * * * * 1.001 1.16 1.000 1.00
FPGA-03 1.009 1.03 * * 0.995 1.03 0.998 1.23 1.000 1.00
FPGA-04 1.046 0.94 * * * * 1.002 1.16 1.000 1.00
FPGA-05 1.026 1.05 * * 1.002 1.03 0.996 1.07 1.000 1.00
FPGA-06 1.008 1.01 * * 1.030 0.98 1.004 1.25 1.000 1.00
FPGA-07 1.001 1.04 * * 0.988 1.04 0.986 1.20 1.000 1.00
FPGA-08 0.991 1.01 * * 0.996 1.01 0.999 1.14 1.000 1.00
FPGA-09 1.003 1.01 * * 0.996 1.03 1.002 1.12 1.000 1.00
FPGA-10 1.006 1.01 * * 1.000 1.01 0.996 1.03 1.000 1.00
FPGA-11 1.011 0.98 * * 1.002 1.05 1.009 1.15 1.000 1.00
FPGA-12 1.017 1.02 * * 0.995 1.04 1.003 1.14 1.000 1.00

Norm. 1.012 1.01 1.009 1.01 1.001 1.03 1.000 1.15 1.000 1.00

* Placement fails to converge.

subgradient-based multiplier updating scheme are proposed to achieve
satisfiable solution quality with fast and robust numerical convergence.
Besides pure-wirelength minimization, elfPlace is also capable of
optimizing routability, pin density, and downstream clustering com-
patibility based on a unified instance area adjustment scheme. Our
experiments show that elfPlace significantly outperforms four state-
of-the-art placers in routed wirelength with competitive runtime. In the
future, we plan to incorporate timing optimization into elfPlace
framework.

ACKNOWLEDGMENT

This work was supported in part by Xilinx Inc. The authors would
like to thank Dr. Gengjie Chen and Prof. Evangeline F.Y. Young for
providing the binary of RippleFPGA and Dr. Ziad Abuowaimer, Prof.
Shawki Areibi, and Prof. Gary Grewal for providing the binary of
GPlace3.0.

REFERENCES

[1] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL, 1997, pp. 213–222.

[2] G. Chen and J. Cong, “Simultaneous placement with clustering and
duplication,” ACM TODAES, vol. 11, no. 3, pp. 740–772, 2006.

[3] P. Maidee, C. Ababei, and K. Bazargan, “Timing-driven partitioning-based
placement for island style FPGAs,” IEEE TCAD, vol. 24, no. 3, pp. 395–
406, 2005.

[4] Y. Xu and M. A. Khalid, “QPF: efficient quadratic placement for FPGAs,”
in FPL, 2005, pp. 555–558.

[5] P. Gopalakrishnan, X. Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in DAC, 2006, pp. 460–465.

[6] M. Xu, G. Gréwal, and S. Areibi, “StarPlace: A new analytic method
for FPGA placement,” Integration, the VLSI Journal, vol. 44, no. 3, pp.
192–204, 2011.

[7] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in FPL, 2012, pp. 143–150.

[8] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” IEEE TCAD, vol. 37,
no. 4, pp. 869–882, 2018.

[9] G. Chen, C.-W. Pui, W.-K. Chow, K.-C. Lam, J. Kuang, E. F. Young,
and B. Yu, “RippleFPGA: Routability-driven simultaneous packing and
placement for modern FPGAs,” IEEE TCAD, vol. 37, no. 10, pp. 2022–
2035, 2018.

[10] W. Li, Y. Lin, M. Li, S. Dhar, and D. Z. Pan, “UTPlaceF 2.0: A
high-performance clock-aware FPGA placement engine,” ACM TODAES,
vol. 23, no. 4, p. 42, 2018.

[11] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal, S. Areibi,
and A. Vannelli, “GPlace3.0: Routability-driven analytic placer for Ultra-
Scale FPGA architectures,” ACM TODAES, vol. 23, no. 5, pp. 66:1–66:33,
2018.

[12] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in DAC, 2013, pp. 10:1–10:6.

[13] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang, “Efficient and effective pack-
ing and analytical placement for large-scale heterogeneous FPGAs,” in
ICCAD, 2014, pp. 647–654.

[14] Y.-C. Kuo, C.-C. Huang, S.-C. Chen, C.-H. Chiang, Y.-W. Chang, and S.-
Y. Kuo, “Clock-aware placement for large-scale heterogeneous FPGAs,”
in ICCAD, 2017, pp. 519–526.

[15] N. K. Darav, A. Kennings, K. Vorwerk, and A. Kundu, “Multi-commodity
flow-based spreading in a commercial analytic placer,” in FPGA, 2019,
pp. 122–131.

[16] W. Li and D. Z. Pan, “A new paradigm for FPGA placement without
explicit packing,” IEEE TCAD, 2018.

[17] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “ePlace-MS: Electrostatics-based
placement for mixed-size circuits,” IEEE TCAD, vol. 34, no. 5, pp. 685–
698, 2015.

[18] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
TCAD, 2018.

[19] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” in ISPD, 2016, pp. 139–
143.

[20] Xilinx Inc., “http://www.xilinx.com,” 2019.
[21] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical

placement for 3D IC designs,” in DAC, 2011, pp. 664–669.
[22] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “Tsv-aware analytical place-

ment for 3-d ic designs based on a novel weighted-average wirelength
model,” IEEE TCAD, vol. 32, no. 4, pp. 497–509, 2013.

[23] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled gpu acceleration for modern VLSI
placement,” in DAC, 2019.

[24] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng, “ePlace: Electrostatics-based placement using fast fourier
transform and Nesterov’s method,” ACM TODAES, vol. 20, no. 2, p. 17,
2015.

[25] C. Lemaréchal, “Lagrangian relaxation,” in Computational combinatorial
optimization. Springer, 2001, pp. 112–156.

[26] C.-L. E. Cheng, “RISA: Accurate and efficient placement routability
modeling,” in ICCAD, 1994, pp. 690–695.

[27] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in DATE, 2007, pp.
1226–1231.

[28] OpenMP 4.0, http://www.openmp.org/, 2019, accessed: 2019-4-1.

