MrDP: <u>Multiple-row Detailed Placement of</u> Heterogeneous-sized Cells for Advanced Nodes

Yibo Lin¹ **Bei Yu**² Xiaoqing Xu¹ Jhih-Rong Gao³ Natarajan Viswanathan³ Wen-Hao Liu³ Zhuo Li³ Charles J. Alpert³ David Z. Pan¹

¹University of Texas at Austin ²The Chinese University of Hong Kong ³Cadence Design Systems

cādence

Outline

Introduction

Problem Formulation

Detailed Placement Algorithms

Experimental Results

Conclusion

Technology Scaling: Fewer Tracks

Track # per row decreases:

- From 10 to 7.5
- Exploring 7.5T for 7nm technology node
- Even with EUV, additional metal layer may be required

(a) And-or-invert (AOI); (b) 2-finger inverter [Liebman+,SPIE'15].

Motivation of Multiple-Row Cells 1

- ► Complex standard cells, such as flip-flops, MUXes, etc.
- Intra-Cell Routability

(a) Cell size 54 grids

(b) Cell size 48 grids

Motivation of Multiple-Row Cells 2

Pin access problem [Taghavi+,ICCAD'10]

(a) pin access failure; (b) pin access success. [Xu+,DAC'14]

Motivation of Multiple-Row Cells 3

Multi-bit flip-flops (MBFF)

[Jiang+,ISPD'11]

[Pokala+,ASIC'92]

Power Line Alignment

Odd-row height cells

Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Power Line Alignment

Odd-row height cells

Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Power Line Alignment

Odd-row height cells

Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Previous Works

Double-row height cells [Wu+,TCAD'15]

- Group and extend single-row height cells into double-row height blocks
- Re-use existing detailed placement frameworks
- Incapable to handle three- and four-row height cells
- Power alignment not addressed

Legalization for Multiple-row height cells [Chow+,DAC'16]

- General to heterogeneous-sized cells
- Minimize total displacement while removing overlaps
- Power alignment addressed
- No performance optimization

Wirelength and Density Metrics

Cell Density: ABU [ICCAD'13 Contest]

$$\begin{aligned} \text{overflow}_{\gamma} &= \max{(0, \frac{\text{ABU}_{\gamma}}{d_t} - 1)} \\ \text{ABU} &= \frac{\sum_{\gamma \in \Gamma} w_{\gamma} \cdot \text{overflow}_{\gamma}}{\sum_{\gamma \in \Gamma} w_{\gamma}}, \Gamma \in \{2, 5, 10, 20\} \end{aligned}$$

Scaled wirelength (sHPWL)

$$sHPWL = HPWL \cdot (1 + ABU)$$

Wirelength and Density Metrics

Cell Density: ABU [ICCAD'13 Contest]

$$\begin{aligned} \text{overflow}_{\gamma} &= \max{(0, \frac{\text{ABU}_{\gamma}}{d_t} - 1)} \\ \text{ABU} &= \frac{\sum_{\gamma \in \Gamma} w_{\gamma} \cdot \text{overflow}_{\gamma}}{\sum_{\gamma \in \Gamma} w_{\gamma}}, \Gamma \in \{2, 5, 10, 20\} \end{aligned}$$

Scaled wirelength (sHPWL)

$$sHPWL = HPWL \cdot (1 + ABU)$$

APU

Average Pin Utilization: capture pin distribution of the layout.

Problem Formulation: MrDP

Multi-row Detailed Placement (MrDP)

Input:

- ► A netlist with heterogeneous-sized cells
- Initial placement with fixed macro blocks

Output:

- Legal placement
- Minimize wirelength and density cost, i.e., sHPWL and APU

Conventional Global Move

- ▶ Pick a cell and move to better position
- ► More difficult with heterogeneous-sized cells

Conventional Global Move

- Pick a cell and move to better position
- ► More difficult with heterogeneous-sized cells

Conventional Global Move

- Pick a cell and move to better position
- ► More difficult with heterogeneous-sized cells

► Cell Pool:

A queue structure used for temporary storage of cells within a chain move

Scoreboard:

- ► Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

► Cell Pool:

A queue structure used for temporary storage of cells within a chain move

Scoreboard:

- ► Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

► Cell Pool:

A queue structure used for temporary storage of cells within a chain move

Scoreboard:

- ► Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

► Cell Pool:

A queue structure used for temporary storage of cells within a chain move

Scoreboard:

- ► Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

Chain Move Discussion

- Order is important
- Max prefix sum of wirelength improvement
- Discard long chains

Cost for a Cell:

$$cost = \Delta WL \cdot (1 + \alpha \cdot c_d) + \beta \cdot c_{ov}$$

- ► △ WL: wirelength cost
- ► c_d: density cost (average of cell and pin densities)
- ▶ cov: overlap cost

Chain Move Discussion

- Order is important
- Max prefix sum of wirelength improvement
- Discard long chains

Cost for a Cell:

$$cost = \Delta WL \cdot (1 + \alpha \cdot c_d) + \beta \cdot c_{ov}$$

- ► △ WL: wirelength cost
- ► *c*_d: density cost (average of cell and pin densities)
- ► *cov*: overlap cost

Theorem

If the input is legal, then the output is guaranteed legal

Ordered Single-Row (OSR) Placement

Well explored for single-row height cells

- ► Free-to-move [Vygen,DATE'98] [Kahng+,ASPDAC'99]
- ► Max displacement [Taghavi+,ICCAD'10] [Lin+,ASPDAC'16]

How to deal with multiple-row height cells?

Limited movements by multiple rows.

Ordered Double-Row (ODR) Placement

- Extend single-row to double-row placement
- Some definitions

Problem Formulation: ODR Placement

Ordered Double-Row (ODR) Placement

Input:

- ► Two rows of cells in a double-row region
- Ordered from left to right within each row
- Maximum displacement M for each cell
- All other cells outside double-row region are fixed

Output:

- Horizontally shift cells
- Optimize HPWL while keep the order of cells within each row

ODR Placement: Ideal Cases

- Only double-row splitting cells
- No crossing cells
- ▶ No inter-row connection within double-row region
- Solve ideal case optimally

Nested Dynamic Programming

Outer-level shortest path

Nested Dynamic Programming

Nested Dynamic Programming

- Any shortest path algorithm can be applied
- Adopt dynamic programming [Lin+,ASPDAC'16]
- \triangleright $\mathcal{O}(nM)$ for single-row placement
- \triangleright $\mathcal{O}(nM^2)$ for double-row placement
- ► Flexible to any cost that only depends on cell itself

ODR Placement: General Cases

- Multiple-row height splitting cells
- Multiple-row height crossing cells: Add overlap cost
- ▶ Inter-row connections within double-row region: Lose optimality

Experimental Setup

- ▶ Implemented in C++
- 8-Core 3.4GHz Linux server
- 32GB RAM
- ▶ ISPD 2005 Contest Benchmark:
 - Double-row height cells [Wu+,TCAD'15]
 - ► Benchmark sizes: 200K to 2M
 - ▶ Utilization: 67% to 91%
 - Double-Row Ratio: around 30%
- ▶ ICCAD 2014 Contest Benchmark:
 - Multiple-row height cells (2–4 rows)
 - ▶ Benchmark sizes: 133K to 961K
 - Utilization: 47% to 65%
 - Multiple-Row Ratio: 15% to 41%

Results on Double-row Height Cells

MrDP v.s. [Wu+,TCAD'15]

- 3% better sHPWL
- 13.2% better APU
- 23.5% runtime overhead

Results on Heterogeneous-sized Cells

MrDP v.s. GP

- 3.7% better sHPWL
- 15.3% better APU

Conclusion

Placement challenges with heterogeneous-sized standard cells in advanced technology nodes

- A placement framework to optimize wirelength and congestion
- ► Chain move scheme
- Ordered double-row placement

Conclusion

Placement challenges with heterogeneous-sized standard cells in advanced technology nodes

- ▶ A placement framework to optimize wirelength and congestion
- Chain move scheme
- Ordered double-row placement

Future work

- Explore the impacts of legalization step
- Different configurations of placement flows

Thank You

Yibo Lin (yibolin@cerc.utexas.edu)

Bei Yu (byu@cse.cuhk.edu.hk)

Xiaoqing Xu (xiaoqingxu@cerc.utexas.edu)

Jhih-Rong Gao (jrgao@cadence.com)

Natarajan Viswanathan (nviswan@cadence.com)

Wen-Hao Liu (wliu@cadence.com)

Zhuo Li (zhuoli@cadence.com)

Charles J. Alpert (alpert@cadence.com)

David Z. Pan (dpan@ece.utexas.edu)

cādence