MrDP: Multiple-row Detailed Placement of Heterogeneous-sized Cells for Advanced Nodes

Yibo Lin ${ }^{1}$ Bei Yu ${ }^{2}$ Xiaoqing Xu ${ }^{1}$ Jhih-Rong Gao ${ }^{3}$ Natarajan Viswanathan ${ }^{3}$ Wen-Hao Liu ${ }^{3}$ Zhuo Li ${ }^{3}$ Charles J. Alpert ${ }^{3} \quad$ David Z. Pan ${ }^{1}$

${ }^{1}$ University of Texas at Austin
${ }^{2}$ The Chinese University of Hong Kong
${ }^{3}$ Cadence Design Systems

Outline

Introduction

Problem Formulation

Detailed Placement Algorithms

Experimental Results

Conclusion

Introduction: Technology Scaling

Introduction: Technology Scaling

Introduction: Technology Scaling

Introduction: Technology Scaling

Technology Scaling: Fewer Tracks

Track \# per row decreases:

- From 10 to 7.5
- Exploring 7.5T for 7 nm technology node
- Even with EUV, additional metal layer may be required

(a) And-or-invert (AOI); (b) 2-finger inverter [Liebman+,SPIE'15].

Motivation of Multiple-Row Cells 1

- Complex standard cells, such as flip-flops, MUXes, etc.
- Intra-Cell Routability

(a) Cell size 54 grids

(b) Cell size 48 grids

Motivation of Multiple-Row Cells 2

Pin access problem [Taghavi+,,ICCAD'10]

(a)

(b)
(a) pin access failure; (b) pin access success. [Xu+,DAC'14]

Motivation of Multiple-Row Cells 3

Multi-bit flip-flops (MBFF)

[Pokala+,ASIC'92]

Power Line Alignment

Odd-row height cells

- Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Power Line Alignment

Odd-row height cells

- Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Power Line Alignment

Odd-row height cells

- Misalignment fixable with vertical flipping

Even-row height cells

- Misalignment NOT fixable with vertical flipping
- New placement techniques are highly necessary

Previous Works

Double-row height cells [Wu+,TCAD'15]

- Group and extend single-row height cells into double-row height blocks
- Re-use existing detailed placement frameworks
- Incapable to handle three- and four-row height cells
- Power alignment not addressed

Legalization for Multiple-row height cells [Chow+,DAC'16]

- General to heterogeneous-sized cells
- Minimize total displacement while removing overlaps
- Power alignment addressed
- No performance optimization

Wirelength and Density Metrics

Cell Density: ABU [ICCAD'13 Contest]

$$
\begin{aligned}
\text { overflow }_{\gamma} & =\max \left(0, \frac{\mathrm{ABU}_{\gamma}}{d_{t}}-1\right) \\
\mathrm{ABU} & =\frac{\sum_{\gamma \in \Gamma} w_{\gamma} \cdot \text { overflow }_{\gamma}}{\sum_{\gamma \in \Gamma} w_{\gamma}}, \Gamma \in\{2,5,10,20\}
\end{aligned}
$$

Scaled wirelength (sHPWL)

$$
\mathrm{sHPWL}=\mathrm{HPWL} \cdot(1+\mathrm{ABU})
$$

Wirelength and Density Metrics

Cell Density: ABU [ICCAD'13 Contest]

$$
\begin{aligned}
\text { overflow }_{\gamma} & =\max \left(0, \frac{\mathrm{ABU}_{\gamma}}{d_{t}}-1\right) \\
\mathrm{ABU} & =\frac{\sum_{\gamma \in \Gamma} w_{\gamma} \cdot \text { overflow }_{\gamma}}{\sum_{\gamma \in \Gamma} w_{\gamma}}, \Gamma \in\{2,5,10,20\}
\end{aligned}
$$

Scaled wirelength (sHPWL)

$$
\mathrm{sHPWL}=\mathrm{HPWL} \cdot(1+\mathrm{ABU})
$$

APU

Average Pin Utilization: capture pin distribution of the layout.

Problem Formulation: MrDP

Multi-row Detailed Placement (MrDP)

Input:

- A netlist with heterogeneous-sized cells
- Initial placement with fixed macro blocks

Output:

- Legal placement
- Minimize wirelength and density cost, i.e., sHPWL and APU

Conventional Global Move

- Pick a cell and move to better position
- More difficult with heterogeneous-sized cells

Conventional Global Move

- Pick a cell and move to better position
- More difficult with heterogeneous-sized cells

Conventional Global Move

- Pick a cell and move to better position
- More difficult with heterogeneous-sized cells

Chain Move

- Cell Pool:

A queue structure used for temporary storage of cells within a chain move

- Scoreboard:

Consists of an array of chain move entries with corresponding changes in wirelength cost for each chain move

- Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

Chain Move

- Cell Pool:

A queue structure used for temporary storage of cells within a chain move

- Scoreboard:

Consists of an array of chain move entries with corresponding changes in wirelength cost for each chain move

- Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

Chain Move

- Cell Pool:

A queue structure used for temporary storage of cells within a chain move

- Scoreboard:

Consists of an array of chain move entries with corresponding changes in wirelength cost for each chain move

- Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

Chain Move

- Cell Pool:

A queue structure used for temporary storage of cells within a chain move

- Scoreboard:

Consists of an array of chain move entries with corresponding changes in wirelength cost for each chain move

- Inspired by KL and FM algorithms in partitioning [KL'70][FM,DAC'82]
- Look for cumulatively good cost

Scoreboard
\vdots
Chain move entry
$\left(\begin{array}{cc\|}\text { Cell } t: p_{1}^{0} \rightarrow p_{1} \\ \text { Cell } g: p_{2}^{0} \rightarrow p_{2} \\ \text { Cell } j: p_{3}^{0} \rightarrow p_{3}\end{array}\right), \Delta \mathrm{WL}$
\vdots

Chain Move Discussion

- Order is important
- Max prefix sum of wirelength improvement
- Discard long chains

Cost for a Cell:

$$
\operatorname{cost}=\Delta \mathrm{WL} \cdot\left(1+\alpha \cdot c_{d}\right)+\beta \cdot c_{o v}
$$

- \triangle WL: wirelength cost
- c_{d} : density cost (average of cell and pin densities)
- $c_{o v}$: overlap cost

Chain Move Discussion

- Order is important
- Max prefix sum of wirelength improvement
- Discard long chains

Cost for a Cell:

$$
\operatorname{cost}=\Delta \mathrm{WL} \cdot\left(1+\alpha \cdot c_{d}\right)+\beta \cdot c_{o v}
$$

- \triangle WL: wirelength cost
- c_{d} : density cost (average of cell and pin densities)
- $c_{o v}$: overlap cost

Theorem

If the input is legal, then the output is guaranteed legal

Ordered Single-Row (OSR) Placement

Well explored for single-row height cells

- Free-to-move [Vygen,DATE'98] [Kahng+,ASPDAC'99]
- Max displacement [Taghavi+,ICCAD'10] [Lin+,ASPDAC'16]

How to deal with multiple-row height cells?

Limited movements by multiple rows.

Ordered Double-Row (ODR) Placement

- Extend single-row to double-row placement
- Some definitions

Problem Formulation: ODR Placement

Ordered Double-Row (ODR) Placement

Input:

- Two rows of cells in a double-row region
- Ordered from left to right within each row
- Maximum displacement M for each cell
- All other cells outside double-row region are fixed

Output:

- Horizontally shift cells
- Optimize HPWL while keep the order of cells within each row

ODR Placement: Ideal Cases

- Only double-row splitting cells
- No crossing cells
- No inter-row connection within double-row region
- Solve ideal case optimally

Nested Dynamic Programming

Outer-level shortest path

Partition $1 \quad$ Partition $2 \quad$ Partition 3

Nested Dynamic Programming

Nested Dynamic Programming

- Any shortest path algorithm can be applied
- Adopt dynamic programming [Lin+,ASPDAC'16]
- $\mathcal{O}(n M)$ for single-row placement
- $\mathcal{O}\left(n M^{2}\right)$ for double-row placement
- Flexible to any cost that only depends on cell itself

Support additional overlap cost
Add very large cost if there is overlap

ODR Placement: General Cases

- Multiple-row height splitting cells
- Multiple-row height crossing cells: Add overlap cost
- Inter-row connections within double-row region: Lose optimality

Overall Flow

Overall Flow

Overall Flow

Overall Flow

Experimental Setup

- Implemented in C++
- 8-Core 3.4 GHz Linux server
- 32GB RAM
- ISPD 2005 Contest Benchmark:
- Double-row height cells [Wu+,TCAD'15]
- Benchmark sizes: 200 K to 2 M
- Utilization: 67\% to 91\%
- Double-Row Ratio: around 30\%
- ICCAD 2014 Contest Benchmark:
- Multiple-row height cells (2-4 rows)
- Benchmark sizes: 133K to 961K
- Utilization: 47\% to 65\%
- Multiple-Row Ratio: 15% to 41%

Results on Double-row Height Cells

(a) Normalized sHPWL

(c) Runtime (s)

(b) APU penalty

MrDP v.s. [Wu+,TCAD'15]

- 3\% better sHPWL
- 13.2\% better APU
- 23.5% runtime overhead

Results on Heterogeneous-sized Cells

(a) Normalized sHPWL

(c) Runtime (s)

(b) APU penalty

MrDP v.s. GP

- 3.7\% better sHPWL
- 15.3% better APU

Conclusion

Placement challenges with heterogeneous-sized standard cells in advanced technology nodes

- A placement framework to optimize wirelength and congestion
- Chain move scheme
- Ordered double-row placement

Conclusion

Placement challenges with heterogeneous-sized standard cells in advanced technology nodes

- A placement framework to optimize wirelength and congestion
- Chain move scheme
- Ordered double-row placement

Future work

- Explore the impacts of legalization step
- Different configurations of placement flows

Yibo Lin (yibolin@cerc.utexas.edu)
 Bei Yu (byu@cse.cuhk.edu.hk)
 Xiaoqing Xu (xiaoqingxu@cerc.utexas.edu)
 Jhih-Rong Gao (jrgao@cadence.com)
 Natarajan Viswanathan (nviswan@cadence.com)
 Wen-Hao Liu (wliu@cadence.com)
 Zhuo Li (zhuoli@cadence.com)

Charles J. Alpert (alpert@cadence.com)
David Z. Pan (dpan@ece.utexas.edu)

cādence

