
GPU Acceleration in VLSI Back-end
Design: Overview and Case Studies

Yibo Lin

Department of Computer Science, Peking University

Website: https://yibolin.com

Email: yibolin@pku.edu.cn

https://yibolin.com.cn/
mailto:gluo@pku.edu.cn

Outline2

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

IC Design Flow3

System Level
Synthesis

Logic
Synthesis

Physical
Design

Physical
Verification Fabricate Package

Test

System Design Logic Design Backend Design

Floorplanning

Placement

Routing

Timing Analysis

Timing Closure
DFM Closure

Challenges in VLSI Design Automation4

IBM Power7
1.2B

Apple A12
6.9B

NVIDIA Xavier
9B

• Large scale: billions of transistors
• Numerous constraints from low-level manufacturing & high-level architecture
• Complicated design flow
• Long design cycles

Advances in GPU 5

CPU

GPU

Over 60x speedup in neural
network training since 2013

NVLink Performance

Tensor core

[Courtesy NVIDIA]

Hardware Acceleration is NOT New for Physical Design6

´ Tom Black @ Standford, 1984
– IEEE Design & Test of Computers

– A Survey of Hardware Accelerators Used in Computer-Aided Design

– Roughly 20 machines built and tested simulation, design rule checking, placement, and routing

´ What has changed
– CPU & GPU performance

– Physical design algorithms

– Problem scales

– Development environment like CUDA since 2007, Tensorflow since 2015, PyTorch since 2016

– …

Challenges in GPU Acceleration7

´ Successful acceleration in deep learning

– Conv., gemm/gemv, BLAS, …

– Conv takes >80% runtime in CNN inference

– Multiply-accumulate (MAC), systolic array, …

´ HPC community

– BLAS kernels

– Graph kernels: SSSP, page rank, BFS, …

´ Physical Design

– No dominating steps

– Placement (~20%), routing (~40%)

– Timing analysis, routing congestion

– Iterative algorithms: ~1K to ~10K

– Single iteration is not slow

– Random memory access

– ~500ms data transfer, ~50ms computation

– All customized kernels, lack of parallelism

– BLAS, graph, heuristics, …

Explored in HPC

Algorithms in PD

Outline8

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

Current Status – Placement9

��	�

Gate-level netlist

Standard cell library

��
	�

Legal placement solution

�����
���
Optimize wirelength, routability

Cell Spreading in Placement
[RePlAce]

Current Status – Global Placement10

´ Mathematical formulation

´ Nonlinear placement objective

´ Wirelength & density map acceleration
– [Lin+, DATE’18]

´ Nonlinear placement with clustering
– mPL6 [Cong+, ICCAD’09] 15x speedup

´ Force-directed TimerWolf
– [Kawam+, ICITC’15]
– [Bredthauer+, ISPDC’18]
– 2-5x speedup

´ Nonlinear placement w. electrostatic
analogy ePlace
– DREAMPlace [Lin+, DAC’19, TCAD’20]
– 30-40x speedup

Wirelength Density

Current Status – Detailed Placement11

´ Greedy and iterative nature

´ Row-based interleaving algorithm
– GDP [Dhar+, HPEC’18], 7x speedup over 20-thread CPU

– Fill 3D dynamic programming table

´ Misc. algorithms
– ABCDPlace [Lin+, TCAD’20], 15x speedup over 20-thread CPU

– Independent set matching, global swap, local reordering

Current Status – Routing12

´ Variations of shortest path problems
– Single-source multiple targets
– 3D grids with millions of nets
– 10+ metal layers
– May be highly congested
– Minimize wirelength

[Curtesy Umich]
A zoom-in 3D view
[curtesy samyzaf]

http://vlsicad.eecs.umich.edu/BK/FGR/
https://samyzaf.com/braude/EDA/index.html

Current Status – Routing13

´ ASIC routing
– Global router [Han+, ICCD’13], decompose multi-pin nets to 2-pin nets, GPU-accelerated SSSP kernels
– 2.5-3.9x speedup with 2.5% WL degradation, over NCTUgr 2.0
– Improve scheduling of nets [Han+, TVLSI’13]
– 4x speedup with 1% WL degradation, over NTHU-Route 2.0

´ FPGA routing
– GPU-accelerated SSSP kernels based on Bellman-Ford algorithm [Shen+, FPGA’17, TPDS’18]
– 21x speedup over sequential VPR 7.0 [Luu+, TRETS’14]

´ Challenges
– Lack of parallelism
– Divergence of computation patterns between nets
– Huge random memory access

Current Status – Timing Analysis

´ Critical for performance and correct functionality of the chips

´ Cell delay: non-linear delay model (NLDM)

´ Net delay: Elmore delay model (Parasitic RC Tree)

´ Timing propagation

Delay for wires

[Courtesy Synopsys]

14

Current Status – Timing Analysis

´ Parallelization on CPU by multithreading
– [Huang+, ICCAD’15] [Lee+, ASP-DAC’18]...

– cannot scale beyond 8-16 threads

´ Leveraging GPU?
– Single instruction multiple thread (SIMT) architecture

´ Statistical STA acceleration using GPU
– [Gulati+, ASPDAC’09] [Cong+, FPGA’10]...

– Less challenging than STA based on pessimism

´ Accelerate STA using modern GPU
– Lookup table query and timing propagation [Wang, ICPP’14] [Murray, FPT’18]

– 6.2x kernel time speed-up, but 0.9x of entire time because of data copying

´ Leveraging GPU is challenging
– Graph-oriented: diverse computational patterns and irregular memory access

– Data copy overhead

15

Outline

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

16

Case Studies – DREAMPlace

´ We propose a novel analogy by casting the nonlinear placement optimization into a
neural network training problem

´ Greatly leverage deep learning hardware (GPU) and software toolkit (e.g., PyTorch)

´ Enable ultra-high parallelism and acceleration while getting the state-of-the-art results

17

Analogy between Neural Network Training and Placement18

Train a neural network Solve a placement

Casting the placement problem into neural network training

Develop Placement Engine with Deep Learning Toolkit19

Customized C++/CUDA Kernels20

Wirelength OP Density Penalty OP

Electrostatic system analogy
Cell instance Electric particle

Smoothing HPWL by
weighted average wirelength

1.9x faster than net-by-net parallelization 1.4x faster than native DCT
implementation used in TensorFlow

Pin-level parallelization
Built-in atomic primitives

Experimental Results for Global Placement21

RePlAce [TCAD’18,Cheng+]
• CPU: 24-core 3.0 GHz Intel Xeon
• 64GB memory allocated

DREAMPlace
• CPU: Intel E5-2698 v4 @2.20GHz
• GPU: 1 NVIDIA Tesla V100
• Single CPU thread was used 34x

speedup

43x
speedup

ISPD 2005 Benchmarks
200K~2M cells

Industrial Benchmarks
1M~10M cells

10M-cell design
finishes within 5min c.f. 3h

Same quality of results!

Runtime Breakdown on Bigblue4 (2M-Cell Design)22

1 thread

10 threads

RePlAce DREAMPlace
with GPU acceleration

DREAMPlace 2.0
ABCDPlace

15X speedup on DP
with GPU acceleration

1min for 10M-cell design

Detailed Placement – Sequential and Iterative Nature23

´ Local and greedy algorithms
– Iterate between a subset of cells

´ Lack of parallelism
– Interdependency due to connectivity

´ Irregular

1

2

2

1

Global Swap

1

2

4 5

3

1
2
3

1’
2’
3’

4 4’
5 5’

Independent Set Matching Local Reordering

1 2 3 4

1 2 4 3

1 3 2 4
…

For each window
Collect a subset of cells
Find the best permutation
Apply the movement
…

Concurrent Independent Set Matching24

´ Moving the refinement from a window to the entire layout

´ Complicated graph analytics
– Suitable algorithms for parallelization
– Specialized parallelization scheme for GPU: know GPU architecture

4

65

3

1

2

4

65

3

1

2

1

2

3

1’

2’

3’

Graph 1

Graph 2
4

5

6

4’

5’

6’

Maximal independent set Balanced Partitioning Bipartite Matching
(Batched)

Blelloch’s algorithm K-means clustering Auction algorithm

Experimental Results for Detailed Placement25

NTUplace3 [TCAD’08,Chen+]
• CPU: Intel E5-2698 v4 @2.20GHz

ABCDPlace
• CPU: Intel E5-2698 v4 @2.20GHz
• GPU: 1 NVIDIA Tesla V100

10M-cell design
finishes within 58s c.f. 26min

Same quality of results!

0 500 1000 1500 2000 2500 3000

#Cells (K)

0

5

10

15

20

25

30

S
p
ee

d
u
p

ov
er

1T

10000 10250 10500 10750 11000

ISPD2005-20T

ISPD2005-GPU

Industrial-20T

Industrial-GPU

ISPD2015-20T

ISPD2015-GPU

10~15x speedup

GPU friendly DP
algorithms

GPU-accelerated
graph solvers

Case Studies – Timing Analysis

´ RC delay computation, task graph levelization, and timing propagation
– Covers the runtime bottlenecks

´ Implementation based on open source STA engine OpenTimer [Huang+, ICCAD2015]

26

RC Delay Computation

´ The Elmore delay model

´ !"#$% = ∑()* +,)-. /0 % 1#2(
– eg. !"#$3 = 1#23 + 1#25 + 1#26 + 1#27 = 1#23 + !"#$5 + !"#$7

´ $8!#9% = ∑()* :;< ;/.= !"#$(×?@→B63 %,(
– eg. $8!#95 = !"#$3?@→3 + !"#$7?@→3 + !"#$5?@→5 + !"#$6?@→5

= $8!#93 + ?3→5!"#$5
´ !$8!#9% = ∑()* +,)-. /0 % 1#2(×$8!#9(
´ D(= ∑()* :;< ;/.= !$8!#9(×?@→B63 %,(

27

Task Graph Levelization

´ Build level-by-level dependencies for timing propagation tasks.
– Essentially a parallel topological sorting.

´ Maintain a set of nodes called frontiers, and update the set using “advance” operation.

Benchmark #nodes Max In-degree Max Out-degree
netcard 3999174 8 260
vga_lcd 397809 12 329
wb_dma 13125 12 95

28

Experimental Results for Timing Analysis

´ NVIDIA CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores

´ Up to 3.69� speed-up (including data copy)

´ Bigger performance margin with bigger problem size

leon2 (21M nodes) Single-core CPU with 1 GPU is close to 40-core CPU

29

Conclusion and Future Work30

´ Recent efforts on accelerating backend design with GPU
– Placement, routing, and timing analysis

´ High-level challenges in physical design
– Lack of parallelism and irregular computation patterns
– high expectation to quality and inevitable quality degradation
– lack of available baseline implementations and high development overhead

´ Future work
– Algorithmic innovation to accelerate practical design stages, routability- or timing-driven PnR
– Push limits on really hard kernels, e.g., bipartite matching, mazing routing, timing propagation
– Universal frameworks or programming models that can support CPU/GPU programming naturally

Acknowledgement31

Thanks!
Questions are welcome

Website: https://yibolin.com

Email: yibolin@pku.edu.cn

David Z. Pan @ UT Austin

Mark Ren & Brucek Khailany @ NVIDIA

Tsung-Wei Huang @ Utah

Zizheng Guo @ PKU

https://yibolin.com.cn/
mailto:yibolin@pku.edu.cn

