
GPU Acceleration in VLSI Back-end
Design: Overview and Case Studies

Yibo Lin

Department of Computer Science, Peking University

Website: https://yibolin.com

Email: yibolin@pku.edu.cn

https://yibolin.com.cn/
mailto:gluo@pku.edu.cn

Outline2

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

IC Design Flow3

System Level
Synthesis

Logic
Synthesis

Physical
Design

Physical
Verification Fabricate Package

Test

System Design Logic Design Backend Design

����	��� 	��

�����	 �������
���

Floorplanning

Placement

Routing

Timing Analysis

Timing Closure
DFM Closure

Challenges in VLSI Design Automation4

IBM Power7
1.2B

Apple A12
6.9B

NVIDIA Xavier
9B

• Large scale: billions of transistors
• Numerous constraints from low-level manufacturing & high-level architecture
• Complicated design flow
• Long design cycles

Advances in GPU 5

CPU

GPU

Over 60x speedup in neural
network training since 2013

NVLink Performance

Tensor core

[Courtesy NVIDIA]

Hardware Acceleration is NOT New for Physical Design6

´ Tom Black @ Standford, 1984
– IEEE Design & Test of Computers

– A Survey of Hardware Accelerators Used in Computer-Aided Design

– Roughly 20 machines built and tested simulation, design rule checking, placement, and routing

´ What has changed
– CPU & GPU performance

– Physical design algorithms

– Problem scales

– Development environment like CUDA since 2007, Tensorflow since 2015, PyTorch since 2016

– …

Challenges in GPU Acceleration7

´ Successful acceleration in deep learning

– Conv., gemm/gemv, BLAS, …

– Conv takes >80% runtime in CNN inference

– Multiply-accumulate (MAC), systolic array, …

´ HPC community

– BLAS kernels

– Graph kernels: SSSP, page rank, BFS, …

´ Physical Design

– No dominating steps

– Placement (~20%), routing (~40%)

– Timing analysis, routing congestion

– Iterative algorithms: ~1K to ~10K

– Single iteration is not slow

– Random memory access

– ~500ms data transfer, ~50ms computation

– All customized kernels, lack of parallelism

– BLAS, graph, heuristics, …

Explored in HPC

Algorithms in PD

Outline8

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

Current Status – Placement9

��	�

Gate-level netlist

Standard cell library

��
	�

Legal placement solution

�����
���
Optimize wirelength, routability

Cell Spreading in Placement
[RePlAce]

Current Status – Global Placement10

´ Mathematical formulation

´ Nonlinear placement objective

´ Wirelength & density map acceleration
– [Lin+, DATE’18]

´ Nonlinear placement with clustering
– mPL6 [Cong+, ICCAD’09] 15x speedup

´ Force-directed TimerWolf
– [Kawam+, ICITC’15]
– [Bredthauer+, ISPDC’18]
– 2-5x speedup

´ Nonlinear placement w. electrostatic
analogy ePlace
– DREAMPlace [Lin+, DAC’19, TCAD’20]
– 30-40x speedup

Wirelength Density

Current Status – Detailed Placement11

´ Greedy and iterative nature

´ Row-based interleaving algorithm
– GDP [Dhar+, HPEC’18], 7x speedup over 20-thread CPU

– Fill 3D dynamic programming table

´ Misc. algorithms
– ABCDPlace [Lin+, TCAD’20], 15x speedup over 20-thread CPU

– Independent set matching, global swap, local reordering

Current Status – Routing12

´ Variations of shortest path problems
– Single-source multiple targets
– 3D grids with millions of nets
– 10+ metal layers
– May be highly congested
– Minimize wirelength

[Curtesy Umich]
A zoom-in 3D view
[curtesy samyzaf]

http://vlsicad.eecs.umich.edu/BK/FGR/
https://samyzaf.com/braude/EDA/index.html

Current Status – Routing13

´ ASIC routing
– Global router [Han+, ICCD’13], decompose multi-pin nets to 2-pin nets, GPU-accelerated SSSP kernels
– 2.5-3.9x speedup with 2.5% WL degradation, over NCTUgr 2.0
– Improve scheduling of nets [Han+, TVLSI’13]
– 4x speedup with 1% WL degradation, over NTHU-Route 2.0

´ FPGA routing
– GPU-accelerated SSSP kernels based on Bellman-Ford algorithm [Shen+, FPGA’17, TPDS’18]
– 21x speedup over sequential VPR 7.0 [Luu+, TRETS’14]

´ Challenges
– Lack of parallelism
– Divergence of computation patterns between nets
– Huge random memory access

Current Status – Timing Analysis

´ Critical for performance and correct functionality of the chips

´ Cell delay: non-linear delay model (NLDM)

´ Net delay: Elmore delay model (Parasitic RC Tree)

´ Timing propagation

Delay for wires

[Courtesy Synopsys]

14

Current Status – Timing Analysis

´ Parallelization on CPU by multithreading
– [Huang+, ICCAD’15] [Lee+, ASP-DAC’18]...

– cannot scale beyond 8-16 threads

´ Leveraging GPU?
– Single instruction multiple thread (SIMT) architecture

´ Statistical STA acceleration using GPU
– [Gulati+, ASPDAC’09] [Cong+, FPGA’10]...

– Less challenging than STA based on pessimism

´ Accelerate STA using modern GPU
– Lookup table query and timing propagation [Wang, ICPP’14] [Murray, FPT’18]

– 6.2x kernel time speed-up, but 0.9x of entire time because of data copying

´ Leveraging GPU is challenging
– Graph-oriented: diverse computational patterns and irregular memory access

– Data copy overhead

15

Outline

´ Introduction

´ Challenges of GPU Acceleration

´ Current Status
– Placement
– Routing
– Timing analysis

´ Case Studies
– Placement
– Timing analysis

´ Conclusion & Future Work

16

Case Studies – DREAMPlace

´ We propose a novel analogy by casting the nonlinear placement optimization into a
neural network training problem

´ Greatly leverage deep learning hardware (GPU) and software toolkit (e.g., PyTorch)

´ Enable ultra-high parallelism and acceleration while getting the state-of-the-art results

17

Analogy between Neural Network Training and Placement18

Train a neural network Solve a placement

Casting the placement problem into neural network training

Develop Placement Engine with Deep Learning Toolkit19

Customized C++/CUDA Kernels20

Wirelength OP Density Penalty OP

Electrostatic system analogy
Cell instance Electric particle

Smoothing HPWL by
weighted average wirelength

1.9x faster than net-by-net parallelization 1.4x faster than native DCT
implementation used in TensorFlow

Pin-level parallelization
Built-in atomic primitives

Experimental Results for Global Placement21

RePlAce [TCAD’18,Cheng+]
• CPU: 24-core 3.0 GHz Intel Xeon
• 64GB memory allocated

DREAMPlace
• CPU: Intel E5-2698 v4 @2.20GHz
• GPU: 1 NVIDIA Tesla V100
• Single CPU thread was used 34x

speedup

43x
speedup

ISPD 2005 Benchmarks
200K~2M cells

Industrial Benchmarks
1M~10M cells

10M-cell design
finishes within 5min c.f. 3h

Same quality of results!

Runtime Breakdown on Bigblue4 (2M-Cell Design)22

1 thread

10 threads

RePlAce DREAMPlace
with GPU acceleration

DREAMPlace 2.0
ABCDPlace

15X speedup on DP
with GPU acceleration

1min for 10M-cell design

Detailed Placement – Sequential and Iterative Nature23

´ Local and greedy algorithms
– Iterate between a subset of cells

´ Lack of parallelism
– Interdependency due to connectivity

´ Irregular

1

2

2

1

Global Swap

1

2

4 5

3

1
2
3

1’
2’
3’

4 4’
5 5’

Independent Set Matching Local Reordering

1 2 3 4

1 2 4 3

1 3 2 4
…

For each window
Collect a subset of cells
Find the best permutation
Apply the movement
…

Concurrent Independent Set Matching24

´ Moving the refinement from a window to the entire layout

´ Complicated graph analytics
– Suitable algorithms for parallelization
– Specialized parallelization scheme for GPU: know GPU architecture

4

65

3

1

2

4

65

3

1

2

1

2

3

1’

2’

3’

Graph 1

Graph 2
4

5

6

4’

5’

6’

Maximal independent set Balanced Partitioning Bipartite Matching
(Batched)

Blelloch’s algorithm K-means clustering Auction algorithm

Experimental Results for Detailed Placement25

NTUplace3 [TCAD’08,Chen+]
• CPU: Intel E5-2698 v4 @2.20GHz

ABCDPlace
• CPU: Intel E5-2698 v4 @2.20GHz
• GPU: 1 NVIDIA Tesla V100

10M-cell design
finishes within 58s c.f. 26min

Same quality of results!

0 500 1000 1500 2000 2500 3000

#Cells (K)

0

5

10

15

20

25

30

S
p
ee

d
u
p

ov
er

1T

10000 10250 10500 10750 11000

ISPD2005-20T

ISPD2005-GPU

Industrial-20T

Industrial-GPU

ISPD2015-20T

ISPD2015-GPU

10~15x speedup

GPU friendly DP
algorithms

GPU-accelerated
graph solvers

Case Studies – Timing Analysis

´ RC delay computation, task graph levelization, and timing propagation
– Covers the runtime bottlenecks

´ Implementation based on open source STA engine OpenTimer [Huang+, ICCAD2015]

26

RC Delay Computation

´ The Elmore delay model

´ !"#$% = ∑()* +,)-. /0 % 1#2(
– eg. !"#$3 = 1#23 + 1#25 + 1#26 + 1#27 = 1#23 + !"#$5 + !"#$7

´ $8!#9% = ∑()* :;< ;/.= !"#$(×?@→B63 %,(
– eg. $8!#95 = !"#$3?@→3 + !"#$7?@→3 + !"#$5?@→5 + !"#$6?@→5

= $8!#93 + ?3→5!"#$5
´ !$8!#9% = ∑()* +,)-. /0 % 1#2(×$8!#9(
´ D(= ∑()* :;< ;/.= !$8!#9(×?@→B63 %,(

27

Task Graph Levelization

´ Build level-by-level dependencies for timing propagation tasks.
– Essentially a parallel topological sorting.

´ Maintain a set of nodes called frontiers, and update the set using “advance” operation.

Benchmark #nodes Max In-degree Max Out-degree
netcard 3999174 8 260
vga_lcd 397809 12 329
wb_dma 13125 12 95

28

Experimental Results for Timing Analysis

´ NVIDIA CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores

´ Up to 3.69� speed-up (including data copy)

´ Bigger performance margin with bigger problem size

leon2 (21M nodes) Single-core CPU with 1 GPU is close to 40-core CPU

29

Conclusion and Future Work30

´ Recent efforts on accelerating backend design with GPU
– Placement, routing, and timing analysis

´ High-level challenges in physical design
– Lack of parallelism and irregular computation patterns
– high expectation to quality and inevitable quality degradation
– lack of available baseline implementations and high development overhead

´ Future work
– Algorithmic innovation to accelerate practical design stages, routability- or timing-driven PnR
– Push limits on really hard kernels, e.g., bipartite matching, mazing routing, timing propagation
– Universal frameworks or programming models that can support CPU/GPU programming naturally

Acknowledgement31

Thanks!
Questions are welcome

Website: https://yibolin.com

Email: yibolin@pku.edu.cn

David Z. Pan @ UT Austin

Mark Ren & Brucek Khailany @ NVIDIA

Tsung-Wei Huang @ Utah

Zizheng Guo @ PKU

https://yibolin.com.cn/
mailto:yibolin@pku.edu.cn

