
0

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA
Placement Engine

WUXI LI, YIBO LIN, MENG LI, SHOUNAK DHAR, AND DAVID Z. PAN,
The University of Texas at Austin

Modern field-programmable gate array (FPGA) devices contain complex clock architectures on top of config-
urable logics. Unlike application specific integrated circuits (ASICs), the physical structure of clock networks
in an FPGA is pre-manufactured and cannot be adjusted to different applications. Furthermore, clock routing
resources are typically limited for high-utilization designs. Consequently, clock architectures impose extra
clock constraints and further complicate physical implementation tasks such as placement. Traditional ASIC
placement techniques only optimize conventional design metrics such as wirelength, routability, power, and
timing without clock legality consideration. It is imperative to have new techniques to honor clock constraints
during placement for FPGAs. In this paper, we propose a high-performance FPGA placement engine, UT-
PlaceF 2.0, that optimizes wirelength and routability while honoring complex clock constraints. Our proposed
approaches consist of an iterative minimum-cost-flow-based cell assignment as well as a clock-aware packing
for producing clock-legal yet high-quality placement solutions. UTPlaceF 2.0 won the first place in ISPD’17
clock-aware FPGA placement contest organized by Xilinx, outperforming the second- and the third-place
winners by 4.0% and 10.0%, respectively, in routed wirelength with competitive runtime, on a set of industry
benchmarks.

CCS Concepts: • Hardware→ Reconfigurable logic and FPGAs; Design Aids;

Additional Key Words and Phrases: FPGA, Placement, Packing, Clock Legalization

ACM Reference format:

WUXI LI, YIBO LIN, MENG LI, SHOUNAKDHAR, and DAVID Z. PAN. 2017. UTPlaceF 2.0: A High-Performance
Clock-Aware FPGA Placement Engine. ACM Trans. Des. Autom. Electron. Syst. 0, 0, Article 0 (April 2017),
23 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Placement is one of the most important and time-consuming optimization steps in FPGA imple-
mentation flow and it can significantly affect the efficiency and quality of mapped designs on FPGA
devices. The placement problem has attracted great attention from both academia and industry and
has been intensively studied during the last two decades. However, with the increasing complexity
and scale of modern FPGA devices, today’s FPGA architecture imposes various intricate constraints,
which have not yet been paid enough attention to, during placement stage. These constraints
have great impact on placement quality in terms of traditional design metrics such as wirelength,

Author’s addresses: W. Li, Y. Lin, M. Li, S. Dhar, and D. Z. Pan; Electrical and Computer Engineering Department, University
of Texas at Austin, Austin, TX 78712; emails: wuxi.li@utexas.edu, dpan@ece.utexas.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1084-4309/2017/4-ART0 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 W. Li et al.

routability, power, and timing. Therefore, it is imperative to have new placement techniques to
honor these complicated architecture constraints.
Clock rules, among various FPGA architecture constraints, are of great importance, not only

because of their significant impact on timing closure and power dissipation but their imposed
layout constraints that affect how efficiently other logics can be mapped. With the consideration of
clock rules, placement turns out to be much more difficult for FPGAs even to find a feasible solution.
For modern FPGAs, clock network planning must be involved during or even before placement
stage due to their pre-manufactured clock networks, which cannot be adjusted to different designs,
as well as their limited clock routing resources. The interdependency between clock sink placement
and clock network planning makes the clock-aware placement for FPGAs a challenging chicken
and egg problem.

Besides placement, clock rules also impose severe difficulties to FPGA packing. Traditional logical
packing techniques without considering physical information are blind to layout constraints intro-
duced by clocks, which often produce unplaceable solutions. So it becomes critical and necessary
to incorporate clock rules together with physical information for packing algorithms to deliver
clock- and placement-friendly netlists.

While many existing works have proposed fairly mature placement and packing techniques for
FPGAs to optimize conventional design metrics such as wirelength, routability, power, and timing
[3–5, 7, 8, 10, 11, 13–18, 20], there has been limited research effort on placement and packing with
the awareness of clock rules. The closest related previous work is [6], which proposes a cost function
for cell swapping that penalizes high-clock-usage placement and integrates it into a conventional
simulated-annealing-based placement engine to produce clock-legal solutions. However, their
approach suffers from slow annealing process and its quality heavily depends on the cost function
tuning. Moreover, their approach can easily get stuck in some local swappings and hence unable to
resolve global clock congestions.
To address the clock legalization challenges in FPGA placement for large-scale state-of-the-art

commercial FPGAs, we proposed a high-performance clock-aware placement engine, UTPlaceF
2.0, which simultaneously optimizes the conventional placement objectives of wirelength and
routability and honors complicated global and detailed clock constraints. The major contributions
of this work are highlighted as follows.

• An iterative minimum-cost-flow-based cell assignment technique producing clock-legal
solutions with minimized perturbation to placements optimized for other design metrics
(e.g., wirelength and routability).

• A clock-aware packing technique with probabilistic clock distribution estimation for pro-
ducing clock- and placement-friendly netlists.

• Won first place in ISPD’17 clock-aware FPGA placement contest [22] on industry-strength
benchmarks released by Xilinx [19] and outperforms the second- and third-place winners
by 4.0% and 10.0%, respectively, in routed wirelength with competitive runtime.

The rest of this paper is organized as follows. Section 2 reviews the preliminaries and presents the
UTPlaceF 2.0 framework overview. Section 3 gives the details of UTPlaceF 2.0 algorithms. Section 4
shows the experimental results, followed by the conclusion in Section 5.

2 PRELIMINARIES AND OVERVIEW
In this section, we will briefly introduce the targeted FPGA clocking architecture and give the
constraints and problem formulation for clock-aware placement. At the end of this section, an
overview of the proposed UTPlaceF 2.0 framework will be exposed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:3

Clock Region

24 Vertical Clock Routing Tracks (VR)
24 Vertical Clock Distribution Tracks (VD)

24
 H

or
izo

nt
al

 C
lo

ck
 R

ou
tin

g
Tr

ac
ks

 (H
R

)
24

 H
or

izo
nt

al
 C

lo
ck

 D
is

tri
bu

tio
n

Tr
ac

ks
 (H

D
)

(a)

Clock Distribution
Tracks

Clock Routing
Tracks

Leaf Clock
Tracks

Bi-directional Tri-State Gate
Uni-directional Tri-State Gate

HD

HR

VD VR

HR

HD

VD VR

(b)

HD

Half-Column Regions

HD

(c)

Half-Column
Regions

Leaf Clock
Tracks

HD

CLB DSP RAM

HD

(d)

Fig. 1. Clocking architecture of Xilinx Ultrascale. (a) A global view of 3 by 3 of 9 clock regions, the clock
routing network (red), and the clock distribution network (blue). (b) A detailed view of clock routing tracks,
clock distribution tracks, and leaf clock tracks within a clock region. (c) A global view of half-column regions
within a clock region. (d) A detailed view of three adjacent half-column regions with different logic resources.

2.1 Clocking Architecture
UTPlaceF 2.0 is targeted to Xilinx UltraScale VU095 [19], which was adopted in both ISPD’16 and
ISPD’17 FPGA placement contests [21, 22]. In this particular architecture, each FPGA device is
divided into 5 by 8 of 40 clock regions and each clock region contains synchronous elements such
as configurable logic blocks (CLBs), digital signal processors (DSPs), random-access memories
(RAMs), and so on. Each CLB further consists of lookup tables (LUTs) and flip-flops (FFs).

The global clocking architecture is a two-level structure containing a clock routing network on
top of a clock distribution network. As shown in Figure 1(a), both routing and distribution networks
have 24 horizontal and 24 vertical tracks running through each clock region. A detailed view of
clocking architecture within a clock region is exposed in Figure 1(b). The connection between any

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:4 W. Li et al.

horizontal and vertical clock routing tracks (HR and VR) is bidirectional but the same connection
(HD and VD) is unidirectional (from VD to HD) in clock distribution network. Besides, a clock
can hop onto VD through their corresponding HR and VR, but there is no path back vice versa.
Therefore, once a clock is hooked on the clock distribution network (HD and VD), it can only stay
on it or go to the leaf-level clock tracks.

For the leaf clock networks, a clock region is further divided into multiple half-column regions
of two-site width and half-clock-region height as shown in Figure 1(c). Figure 1(d) illustrates a
detailed view of three adjacent half-column regions. Different half-column regions might contain
distinct logic resources, such as CLBs, DSPs, and RAMs, but they have similar leaf clock networks
to directly drive clock sinks within them. More detailed clocking architecture can be found in [22].

2.2 Clock Constraints for Placement

32
21

1 1 0
1

1

(a)

2 2 3 2

2 1 2 2

(b)

Fig. 2. Illustration of clock demand calculation for clock regions and half-column regions. Different colors
represent different clocks. (a) Global clock demand calculation for clock regions. (b) Clock demand calculation
for half-column regions within a clock region.

Restricted by the clocking architecture, two major constraints, namely clock region constraint
and half-column region constraint, are imposed in the placement stage.
Clock region constraint is introduced by the limited clock routing/distribution tracks and it

restricts the global clock demand in each clock region must be equal to or less than 24 in our
targeted FPGA architecture. For a clock region, its global clock demand is defined as the total
number of clock nets that have their bounding boxes intersected with it. Figure 2(a) illustrates how
global clock demands are calculated for a simple placement with three clock nets. The top layer
shows the sink distribution for each clock, the three middle layers represent the spanning clock
regions of each clock and the layer in the bottom gives the final global clock demand in each clock
region.
Similarly, imposed by the limited leaf clock tracks, half-column region constraint requires that

each half-column region can only contain at most 12 clocks. Figure 2(b) illustrates the clock demand
calculation for half column regions within a clock region. Different from clock regions, the clock

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:5

demand in a half-column region is only the number of clocks inside it, regardless of clock net
bounding boxes.

2.3 Problem Formulation
In modern FPGA placement, the optimization usually includes multiple objectives, such as wire-
length, which is measured by Half-Perimeter Wirelength (HPWL), and routability. Wirelength is
still regarded as the major objective, since it is a good first-order approximation of many other
metrics, e.g., power and timing. However, pure wirelength-driven placement often results in routing
quality degradation and even unroutable solutions. Therefore, in UTPlaceF 2.0, wirelength and
routability are optimized simultaneously.

To produce legal placement solutions, apart from clock constraints, packing rules also need to be
satisfied when multiple LUTs and FFs are placed into the same CLB site. The detailed packing rules
for our targeted FPGA are elaborated in [21].

With all constraints and objectives defined, we now define our clock-aware placement problem
as follows.

Problem 1 (Clock-Aware Placement). Given a netlist of LUTs, FFs, DSPs, RAMs and I/Os,
produce a legal placement solution with minimized routed wirelength, meanwhile packing rules, clock
region constraint, and half-column region constraint are satisfied.

2.4 UTPlaceF 2.0 Overview
The overall flow of UTPlaceF 2.0 is shown in Figure 3. UTPlaceF 2.0 is a natural extension of
UTPlaceF [7] and consists of five major steps: 1) flat initial placement (FIP), 2) packing, 3) CLB-level
global placement, 4) legalization, and 5) detailed placement. On top of conventional wirelength
and routability optimizations performed in UTPlaceF, clock constraints are explicitly considered
throughout the UTPlaceF 2.0 framework.

FIP is responsible for producing physical location and routing congestion information of each cell
to better guide decision making in the packing stage. It consists of two phases: 1) pure wirelength-
driven phase and 2) clock- and routability-driven phase. In each iteration of the first phase, a
quadratic analytical placement is solved to minimize wirelength, followed by a rough legalization
[9] for cell overlapping removal. After that, a sequence of global moves are performed to further
refine rough-legalized placement while preserving cell density. In the second phase, besides the
conventional routability optimization, an additional clock region assignment (see Section 3.1) step
is called after the quadratic placement. It produces a cell-to-clock-region assignment solution that
satisfies the clock region constraint. Then, the rough legalization and heterogeneous cell (e.g., DSPs,
RAMs, and I/Os) legalization are only performed within each clock region to honor the assignment
result. UTPlaceF 2.0 stops FIP once the wirelength converges.

In the packing stage, a probability-based estimation is performed to predict the clock distribution
in the final placement solution. Then, by incorporating the estimated clock information into the
original packing algorithm in UTPlaceF, the packing in UTPlaceF 2.0 is enhanced to be clock-aware
(see Section 3.2).

CLB-level global placement is performed immediately after packing to further optimize the
placement for the post-packing netlist. It shares the same framework with the second phase of FIP,
and use the final solution of FIP as the starting point to speed-up placement convergence.

In legalization stage, while minimizing the conventional objective of pin movement, clock region
constraint and half-column region constraint are rigorously respected by clock region assignment
technique and half-column region assignment technique (see Section 3.3), respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:6 W. Li et al.

Circuit

Flat Initial Placement

Clock-Aware
Detailed Placement

CLB-Level Global Placement

Yes

NoHPWL gap
< 50%?

Quadratic Programing
+

Rough Legalization
+

Density-Preserving Global Move

Quadratic Programming

Routing Congestion Estimation
+

History-Based Cell Inflation

HPWL gap
< 5%?

No

Yes

Clock-Aware Density-
Preserving Global Move

Phase I
Wirelength-Driven Placement

Return

Phase II
Clock- & Routability-Driven Placement

Clock Region Assignment

Clock Region Assignment

Half-Column Region
Assignment

Clock-Aware Legalization

Packing

Gaussian-Based Clock
Distribution Estimation

Clock-Aware Packing

End

For Each Clock Region:

Rough Legalization
+

DSP, RAM, I/O Legalization

Fig. 3. The overall flow of UTPlaceF 2.0. Yellow-shaded blocks indicates major new/modified steps that differ
from UTPlaceF.

Finally, detailed placement techniques in UTPlaceF is extended to be clock-aware and maintain
the clock legality throughout the wirelength and routability optimization process before the final
solution is produced.

3 UTPLACEF 2.0 ALGORITHMS
In this section, we will explain UTPlaceF 2.0 algorithms, including clock region assignment, clock-
aware packing, and half-column region assignment, in details.

3.1 Clock Region Assignment
Clock region assignment is a key step in UTPlaceF 2.0 to ensure the satisfaction of clock region
constraint. It is intensively called throughout major steps, such as FIP, CLB-level global placement,
and legalization, in UTPlaceF 2.0. Therefore, it has a significant impact on both solution quality
and runtime. Here we formally define the clock region assignment problem as follows.

Problem 2 (Clock Region Assignment). Given a rough-legalized placement and logic resource
capacity of each clock region, assign cells to clock regions to minimize total pin movement without
logic resource and global clock overflow.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:7

Given the notations defined in Table 1, Problem 2 can be written as a binary minimization
problem with linear and boolean logical constraints as shown in Formulation (1).

Table 1. Notations Used in Clock Region Assignment

V The set of cells.
V (s) The set of cells of resource type s ∈ {CLB, DSP, RAM}.
Pi The number of pins in cell i .
A
(s)
i The cell i’s demand for resource type s ∈ {CLB, DSP, RAM}.
R The set of clock regions.

C
(s)
j The clock region j’s capacity for resource type s ∈ {CLB, DSP, RAM}.

Di, j The physical distance between cell i and clock region j.
E The set of clock nets.

Zi,e A binary value represents whether cell i is in clock net e .
L+j The set of clock regions that are left to or in the same column of clock region j.
R+j The set of clock regions that are right to or in the same column of clock region j.
B+j The set of clock regions that are below or in the same row of clock region j.
T +j The set of clock regions that are above or in the same row of clock region j.

minimize
x

∑
i ∈V

∑
j ∈R

Pi · Di, j · xi, j , (1a)

subject to xi, j ∈ {0, 1},∀i ∈ V,∀j ∈ R, (1b)∑
j ∈R

xi, j = 1,∀i ∈ V, (1c)∑
i ∈V

A(s)
i · xi, j ≤ C (s)

j ,∀j ∈ R,∀s ∈ {CLB, DSP, RAM} (1d)

∑
e ∈E

[(∨
q∈L+j

Zi,e · xi,q

)
∧

(∨
q∈R+j

Zi,e · xi,q

)
∧

(∨
q∈B+j

Zi,e · xi,q

)
∧

(∨
q∈T +j

Zi,e · xi,q

)]
≤ 24,∀j ∈ R . (1e)

(a) (b) (c) (d)

Fig. 4. Illustration of the sets of clock regions (dashed regions) (a) L+j , (b) R
+
j , (c) B

+
j , and (d) T +j of clock

region j (red) defined in Table 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:8 W. Li et al.

Formulation (1) is optimized over binary variables xi, j to minimize the objective (1a) of total pin
movement. If cell i ∈ V is assigned to clock region j ∈ R, then xi, j = 1, otherwise xi, j = 0. The
constraint (1c) ensures that each cell is assigned to one and only one clock region. The constraint
(1d) guarantees the demands are no greater than the capacities for all logic resource types (e.g., CLB,
DSP, and RAM) in each clock region. The boolean logical constraint (1e) ensures the satisfaction
of clock region constraint. The sets of clock regions L+j , R

+
j , B

+
j , and T

+
j of clock region j are

illustrated in Figure 4. Intuitively, for a given clock region j, if and only if a clock net has cells
located in all L+j , R

+
j , B

+
j , and T

+
j , its bounding box would intersect with j and occupy global clock

resource in it. The constraint (1e) sums up all such clock nets for each clock region and restricts
the clock usage no more than the clock capacity, which is 24 in our target FPGA architecture.

3.1.1 The Relaxation Algorithm. With proper modeling, the boolean logical constraint (1e) can be
transformed to a set of linear constraints and then Formulation (1) can be optimally solved utilizing
integer linear programming techniques. However, integer linear programming is computationally
expensive and suffers from unaffordable runtime for our application. Therefore, here we relax
Formulation (1) to an easier problem that can be efficiently solved, as shown in Formulation (2).

minimize
x ,λ

∑
i∈V

∑
j∈R

(Pi · Di, j + λi, j) · xi, j, (2a)

subject to xi, j ∈ {0, 1},∀i ∈ V,∀j ∈ R, (2b)∑
j ∈R

xi, j = 1,∀i ∈ V, (2c)∑
i ∈V

Ai · xi, j ≤ Cj ,∀j ∈ R . (2d)

Compared to the original Formulation (1), Formulation (2) has two major differences: 1) instead
of considering capacity constraint (1d) simultaneously for all logic resource types, here we only
consider the capacity constraint (2d) for one resource type at a time (i.e., we consider three resource
types separately); 2) we remove the boolean logical constraint (1e) and add a penalty multiplier λi, j
for each potential cell i ∈ V to clock region j ∈ R assignment xi, j to the objective (2a).
The main idea of our relaxation can be explained as follows. We first ignore the clock region

constraint (1e) and only respect each logic resource constraint separately. Each time after solving
Formulation (2), we properly penalize assignments causing clock overflow by updating the cor-
responding penalty multipliers λi, j in the objective (2a). By repeating the process of solving and
updating Formulation (2), the assignment will progressively converge to a clock-feasible solution.

The proposed relaxation-based clock region assignment algorithm is summarized in Algorithm 1.
Cells are first divided into three groups based on their resource types, including CLB, DSP, and
RAM, in line 1. Then all penalty multipliers λi, j ,∀i ∈ V,∀j ∈ R are initialized to zero in line
2, which degenerates the Formulation (2) into a pure logic-resource-constrained pin-movement
minimization problem without clock legality consideration. Within the loop from line 3 to line 8,
we first solve Formulation (2) for each cell group under current penalty multiplier settings, and then
in line 7, penalty multipliers λi, j are updated according to the assignment solutions produced from
line 4 to line 6. The penalty multipliers are incrementally updated to penalize assignments causing
clock overflow and new assignments produced by the Formulation (2) with these updated penalty
multipliers will be progressively closer to clock-legal solutions after each iteration. The process of
solving and updating Formulation (2) from line 3 to line 8 is repeated until a clock-overflow-free
assignment is reached.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:9

Algorithm 1 Clock Region Assignment with Relaxation
Input: A rough-legalized placement.
Output: A movement-minimized assignment without logic resource and clock overflow.
1: Divide cells V into three groups, V (CLB), V (DSP), and V (RAM), based on their logic resource

types.
2: λi, j ← 0,∀i ∈ V,∀j ∈ R;
3: while clock overflow exists do
4: for eachU ∈ {V (CLB),V (DSP),V (RAM)} do

5: Solve Formulation (2) forU ; ▷ See Section 3.1.2
6: end for

7: Update penalty multiplier λ; ▷ See Section 3.1.3
8: end while

3.1.2 Minimum-Cost Flow Transformation. One notable merit of our relaxation in Formulation (2)
is that it can be transformed into a minimum-cost-flow problem, which is a fairly mature field with
many efficient algorithms [1].

V R

r1

r|R|

rj

v1

vi

v|V|

s t

0, Ai 0, Cj

Pi · Di,j + �i,j ,1

Fig. 5. The minimum-cost flow representation of Formulation (2). Pair of numbers (e.g., Pi · Di, j + λi, j ,∞)
on each edge represents cost and capacity, respectively, and∞ means unlimited capacity.

Figure 5 illustrates the minimum-cost flow representation of Formulation (2). If all cells inV
have unit resource demand (Ai = 1,∀i, j ∈ V), optimally solving Formulation (2) is equivalent
to computing the minimum-cost flow of amount

∑
i ∈V Ai on the graph. For cases with non-

unit resource demands, however, the assignment solutions corresponding to their minimum-cost
flow results may contain cells that are split into multiple clock regions, which require extra
post-processing steps and slight relaxation on constraint (2d) to guarantee solution feasibility. In
UTPlaceF 2.0, we always apply unit cell resource demand (Ai = 1) to ensure the solutions produced
by our minimum-cost flows transformation are feasible.

3.1.3 Penalty Multiplier Updating. Algorithm 1 is a generalized relaxation framework for solving
the clock region assignment problem. One key step within this framework is how to update the
penalty multiplier λ after each assignment iteration. Various updating strategies can converge
to different feasible solutions. In this section, we will only discuss one specific updating method,
which is applied in UTPlaceF 2.0, and its effectiveness is demonstrated by our experiments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:10 W. Li et al.

The guiding idea of our λ updating method is that we hope clock overflow can be mitigated by
forbidding some clocks from occupying the overflowed clock regions. We observe that to block a
clock net from taking clock resources in a given clock region, all the cells in this clock net must
be strictly restricted in the region below, above, left, or right to the clock region, as shown in
Figure 6. Otherwise, the clock bounding box must intersect with the clock region. Thus, intuitively,
clock congestion can be resolved by iteratively pushing clock nets to these four escaping regions
corresponding to overflowed clock regions.

(a) (b) (c) (d)

Fig. 6. The four escaping regions (green) that are defined as the regions (a) below, (b) above, (c) left, and (d)
right to a given clock region (red), respectively. To avoid employing clock resources of the given clock region,
all cells of a clock net must be simultaneously placed into one of these four escaping regions.

Inspired by this observation, we propose our penalty multiplier updating method summarized in
Algorithm 2. We first choose the most overflowed clock region as our target clock region to resolve
in line 1 and locate the four escaping regions illustrated in Figure 6 for the target clock region from
line 2 to line 5. Then from line 6 to line 11, for clock nets occupying clock resources in the target
clock region, we compute their moving costs to each of these four escaping regions and store the
calculation results as candidates for later overflow resolving. Within the loop from line 16 to line
30, these candidates are accessed in ascending order of their costs. For each candidate, in line 17,
we first ensure that no other candidate associated with the same clock net has been chosen and
then call function IsFeasible to reject candidates leading to infeasible solutions. The feasibility
checking and function IsFeasible will be further discussed later in this section. If a candidate is
feasible, we block all assignments between cells in the candidate clock net and clock regions outside
the candidate escaping region by setting the corresponding penalty multipliers to infinity from line
20 to line 24. This operation prevents the target clock region from being further employed by the
candidate clock in the later assignment iterations. The loop from line 16 to line 30 is repeated until
all overflow in the target clock is fully resolved or the number of resolved overflow reaches the
limit Imax , which is 2 in UTPlaceF 2.0 by default. Intuitively, Imax is the maximum descent step for
clock overflow resolving. Under smaller Imax , clock congestion can be resolved more smoothly and
evenly among different clock regions with the cost of more assignment iterations.
Now we explain the function Cost(e,b) that computes the cost of pushing clock e to escaping

region b. The objective of our assignment is to minimize total pin movement. In addition, each cell
movement may lead to logic resource overflow in the target escaping region. Thus the cost consists
of two components: pin movement cost and logic resource cost, shown as follows,

Cost (e,b) =
∑

i ∈V (e)

(Pi · di,b + α · A
(CLB)
i + β · A(DSP)

i + γ · A(RAM)
i). (3)

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:11

Algorithm 2 Penalty Multiplier Updating For Clock Region Constraint
Input: Penalty multiplier λ. The maximum clock overflow descent step Imax for each clock region

in each iteration.
Output: An updated penalty multiplier λ that will results in less clock overflow.
1: Find the clock region r with the largest clock overflow Omax ;
2: Br ← the region below to r ;
3: Tr ← the region above to r ;
4: Lr ← the region left to r ;
5: Rr ← the region right to r ;
6: l ← ∅;
7: for each clock e ∈ E occupying clock resource of r do
8: for each region b ∈ {Br ,Tr ,Lr ,Rr } do
9: l ← l ∪ {Cost(e,b)}; ▷ See Equation (3)
10: end for

11: end for

12: Sort candidates in l by ascending order of their cost;
13: I ← min(Omax , Imax);
14: i ← 0;
15: chosen[e]← f alse,∀e ∈ E;
16: for each Cost(e,b) ∈ sorted l do
17: if chosen[e] or ¬IsFeasible(e,b, λ) then
18: Continue;
19: end if

20: for each cell i in clock e do
21: for each clock region j that is not in region b do

22: λi, j ← ∞;
23: end for

24: end for

25: chosen[e]← true;
26: i ← i + 1;
27: if i ≥ I then
28: Return;
29: end if

30: end for

whereV (e) denotes the set of cells in clock net e , and di,b denotes the physical distance between
cell i and box region b. The trade-off weights α , β , and γ are set to 5, 50, and 50, respectively, in our
experiments.

The only thing left now is the feasibility checking function IsFeasible(e,b, λ). For an interme-
diate solution with the logic resource constraint satisfied, arbitrarily blocking a set of assignments
cannot further guarantee the existence of feasible solutions. For example, if clock nets are restricted
in small regions without enough logic resources to accommodate all the cells, the corresponding
assignment problem will be infeasible. One straightforward method to avoid this issue is to solve
the updated minimum-cost flow for the graph in Figure 5 to check if a feasible solution exists before
actual applying the new assignment blockings. However, this method is far too cumbersome to

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:12 W. Li et al.

be applied in our iterative framework, which motivates us to propose a light-weight yet effective
feasibility checking method.

s t

V;

V{p,q}

V{p}

V{q}

r1

r2

r3

1
X

i2V{p}

Ai
C1

Fig. 7. Illustration of our maximum-flow-based feasibility checking. Numbers on edges represent their
capacities.

Instead of solving the minimum-cost flow for the graph in Figure 5, we construct a maximum-flow
graph, as illustrated in Figure 7, to perform fast feasibility checking. Here we are trying to assign
a netlist with two clock nets p and q to three clock regions r1, r2, and r3. We divide all cells into
four mutually exclusive groups V{p } , V{q } , V{p,q } , and V∅, based on the clock nets they belong
to, where Vp and Vq denote the groups of cells belonging only to p and q, respectively, V{p,q }
denotes the group of cells belonging to both p and q, andV∅ is the set of cells without clock nets.
In this graph construction, we only introduce edges for unblocked assignments (λi, j , ∞), and
specific to this example, clock p cannot be assigned to r3 and clock q cannot be assigned to r1. Then,
with the proper edge capacity settings as shown in Figure 7, checking the assignment feasibility of
Formulation (2) is equivalent to computing the maximum flow of amount

∑
i ∈V Ai in this graph.

If the resulting maximum flow value is equal to
∑

i ∈V Ai , a feasible solution with the set of new
assignment blockings applied must exist, otherwise, the assignment problem becomes infeasible.
It should be noted that our maximum-flow-based checking are performed for three resource

types (CLB, DSP, and RAM) separately each time and we only conclude the updated problem is
feasible when all three checks are passed.

Comparedwith theminimum-cost flow graph in Figure 5, the problem size is dramatically reduced
by the clock grouping in the graph construction in Figure 7. In addition, edge costs are removed in
the maximum-flow graph since we solve it only for feasibility checking purpose. Therefore, the
proposed maximum-flow-based technique enables a much faster yet reliable feasibility checking
process.

3.1.4 Speed-up Techniques. The minimum-cost flow formulation shown in Figure 5 is optimal for
given λ and unit logic resource demand but may suffer from long runtime for large designs. Instead
of solving flat minimum-cost flow problems, we here propose a geometric clustering technique
to reduce the problem size by grouping cells that are physically close and share the same set of
clock nets together. Our proposed geometric clustering technique can significantly speed up the
minimum-cost flow solving process while preserving good solution quality.

Here we use a simple example in Figure 8 to illustrate our clustering idea. In this example, there
are twelve cells and two clock nets p and q. The “S,A” pair (e.g., {p,q}, 1) on each cell denotes

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:13

{p}, 1{q}, 1

;, 1

;, 1

{p, q}, 1

{p, q}, 1

{p, q}, 1

{p, q}, 1

{p}, 1

{p}, 1

{p}, 1

{q}, 1

(a)

{p}, 3

{p}, 1
{q}, 2

;, 2

{p, q}, 2 {p, q}, 1

{p, q}, 1

(b)

Fig. 8. Illustration of our geometric clustering technique. (a) Twelve cells need to be assigned in the flat
minimum-cost flow without the clustering technique. (b) With our geometric clustering applied, the number
of objects needs to be assigned is reduced to seven. “S,A” pair (e.g., {p,q}, 1) on each cell denotes the set of
clock nets it belongs to and its logic resource demand, respectively. ∅ means the cell does not belong to any
clock nets.

the set of clock nets it belongs to and its logic resource demand, respectively. If the flat minimum-
cost-flow-based assignment in Figure 5 is directly applied, we need to assign twelve objects, as
shown in Figure 8(a), in the problem. However, if we divide all twelve cells into four bins based
on the two-by-two geometric partitioning shown in Figure 8 and cluster cells that have the same
clock signatures within each partition, the number of objects to be assigned will reduce to seven,
as shown in Figure 8(b).

minimize
x ,λ

∑
k∈K

∑
j∈R

(
Pk
Ak
· Dk, j + λk, j) · xk, j, (4a)

subject to xk, j ∈ {0, 1, 2, . . . },∀k ∈ K ,∀j ∈ R, (4b)∑
j ∈R

xk, j = Ak ,∀k ∈ K , (4c)∑
k ∈K

xk, j ≤ Cj ,∀j ∈ R . (4d)

With our clustering technique applied, instead of solving Formulation (2), we solve a very similar
Formulation (4), where K denotes the set of clusters, Pk and Ak denote the total pin count and
total logic resource demand of cells in cluster k , and Dk, j denotes the physical distance between
the average location of cells in cluster k and clock region j. Besides, unit logic resource demand is
assumed for all cells (not clusters).

Formulation (4) can still be solved utilizing the minimum-cost flow transformation illustrated in
Figure 5. However, comparing to Formulation (2), several key differences need to be emphasised.

Firstly, since inaccuracy is injected to pin movement calculation by using averaged pin count Pk
Ak

and averaged cell locations for Dk, j in the objective (4a), less optimal solutions will be obtained
as the cluster size increases. On the other hand, a larger cluster size can dramatically reduce the
problem size, which results in much faster runtime. Therefore, with different partition sizes, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:14 W. Li et al.

can achieve different tradeoffs between quality and runtime. In UTPlaceF 2.0, the partition width
and height are empirically set to 5 CLB sites.

Secondly, in theminimum-cost flow graphwith our clustering technique applied, each assignment
object represents a cluster of cells and does not have unit logic resource demand anymore (i.e.,
Ak ≥ 1). Thus, the final minimum-cost flow solution of Formulation (4) might assign non-zero
flows to more than one edge of an assignment object. It is physically equivalent to splitting a cluster
into subgroups and assigning them to multiple clock regions. For each of these split cases, to decide
which cell goes to which clock region, one more level of minimum-cost flow corresponding to
Formulation (2) is needed. Note that, this second-level minimum-cost flow is only for cells within
the split cluster and the set of clock regions that this cluster has been assigned to. Since we assume
unit resource demand for all cells, split assignment would not happen again in these second-level
minimum-cost flows and the solution feasibility can be guaranteed.

3.2 Clock-Aware Packing
Packing is responsible for clustering LUTs and FFs into CLBs that satisfy all packing rules, mean-
while, optimizing various design metrics such as power, timing, and channel width. In UTPlaceF,
packing is performed by pairwisely merging cells based on a set of attraction functions, which
grant higher priority to cell pairs that are physically closer and share more small nets. Although
the packing algorithm in UTPlaceF is effective for wirelength and routability optimization, it is no
longer able to guarantee solution quality with the newly introduced clock region constraint.

p1

q1

r2: Forbid pr1: Forbid q

Fig. 9. An example to show the necessity of clock-aware packing. p and q denote two clock nets. p1 and q1
are two cells belonging to clock p and q, respectively.

One example to illustrate the necessity of clock awareness for packing is shown in Figure 9.
In this example, clock q is forbidden in clock region r1 and clock p is forbidden in clock region
r2 according to the clock region assignment result in FIP. If we, unfortunately, cluster p1 and q1
together, the packing solution would become infeasible, since no clock region can simultaneously
contain clock p and q. Therefore, it is critical to making packing algorithms clock-aware for solution
feasibility.

3.2.1 Probability-Based Clock Distribution Estimation. One common idea to avoid the case shown
in Figure 9 is to let packing algorithms respect the clock region assignment solution after FIP.
However, this idea imposes another question: how to deal with clock regions with spare global clock
resources. In general, not all the global clock resources are employed after clock region assignment,
so if we can further allocate these spare resources to some clock nets, packing algorithms might
be able to explore a larger solution space and produce better packing solutions. Motivated by
this reason, we propose a probabilistic model to estimate the probability of each clock occupying
each clock region in the final placement solution. The estimation results will be incorporated into
our new packing algorithm (See Section. 3.2.2) to help us smartly make use of those spare clock
resources.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:15

−
2
0

−
1
5

−
1
0

−
5 0 5

1
0

1
5

2
0

0

0.5

1

·105

Displacement

#
C
el
ls

(a)

−
2
0

−
1
5

−
1
0

−
5 0 5

1
0

1
5

2
0

0

0.5

1

·105

Displacement
#

C
el
ls

(b)

Fig. 10. Distributions of cell displacement in the final placement relative to FIP in (a) x direction and (b) y
direction for a representative benchmark, CLK-DESIGN5 (0.94M cells), in ISPD’17 contest example benchmark
suite. All placement solutions are generated by UTPlaceF without clock legality consideration.

The potential clock distribution mismatch between FIP and the final placement is introduced by
the cell movement between them. We collect the displacement of all cells in the final placement
solution relative to their locations in the FIP for a representative benchmark and the result is shown
in Figure 10. It can be seen that the cell displacement in both x and y directions have a bell-shaped
distribution around zero. So it is reasonable to make the assumption that the cell displacement
satisfies the Gaussian distribution with mean value of zero in both x and y directions, which can be
written as follows,

X ′ − X ∼ N (0,σ 2
x), (5a)

Y ′ − Y ∼ N (0,σ 2
y). (5b)

where (X ′,Y ′) and (X ,Y) denote (x, y) coordinates of cells in the final placement and FIP, respec-
tively, N (µ,σ 2) represents a Gaussian distribution with mean value µ and standard deviation σ ,
and σx and σy are estimated standard deviations for cell displacement in x and y directions.
Given the assumption in Equation (5), a cell i at location (xi ,yi) in FIP, and any region r with

bounding box (xlr ,ylr ,xhr ,yhr), the probability of cell i being placed into the region r in the final
placement, denoted by hi,r , can be written as follows,

hi,r = (CDF(xhr ,xi ,σx) − CDF(xlr ,xi ,σx)) · (CDF(yhr ,yi ,σy) − CDF(ylr ,yi ,σy)). (6)

where CDF(x , µ,σ) is the cumulative distribution function of the Gaussian distribution X ∼
N (µ,σ 2) evaluated at x . It represents the probability that X takes value less than or equal to
x . CDF is defined in Equation (7), where erf(x) denotes the error function [2]. Figure 11(a) gives a
visual illustration for the cell-to-region probability calculation process.

CDF(x , µ,σ) =
1
2

[
1 + erf

(x − µ

σ
√
2

)]
. (7)

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:16 W. Li et al.

xlr xhr

yhr

ylr

(xi, yi)
Cell i

Region r

hx = CDF(xhr, xi,�x)�
CDF(xlr, xi,�x)

hy = CDF(yhr, yi,�y)�
CDF(ylr, yi,�y)hi,r = hx · hy

(a)

R
(j)
1 R

(j)
2 R

(j)
3

R
(j)
4

R
(j)
5R

(j)
6R

(j)
7

R
(j)
8 R

(j)
0

(b)

Fig. 11. (a) A visual illustration for the cell-to-region probability calculation shown in Equation (6). (b) Nine
sets of clock regions, R (j)

0 ,R
(j)
1 , . . . ,R

(j)
8 , corresponding to clock region j (red).

Now, we show the method to calculate the probability of clock region j having clock demand
from clock net k in the final placement. Given a clock region j , we divide all clock regions into nine
sets (as shown in Figure 11(b)), R (j)

0 ,R
(j)
1 , . . . ,R

(j)
8 , where R (j)

0 contains only clock region j. It is
easy to see that the bounding box of any clock net k does not intersect with the clock region j if
and only if all cells in the clock net k are placed in one of the four regions that are above, below, to
the left of, and to the right of the clock region j (R (j)

0) (i.e., R (j)
1 ∪ R

(j)
2 ∪ R

(j)
3 , R (j)

5 ∪ R
(j)
6 ∪ R

(j)
7 ,

R
(j)
7 ∪ R

(j)
8 ∪ R

(j)
1 , and R (j)

3 ∪ R
(j)
4 ∪ R

(j)
5). Therefore, the probability of clock region j not being

occupied by clock net k , denoted by Hj,k , can be defined using Equation (8).

Hj,k =
∑

(l,m,n)∈
{(1,2,3), (3,4,5),
(5,6,7), (7,8,1) }

∏
i ∈V (k)

(hi,R (j)
l
+ hi,R (j)

m
+ hi,R (j)

n
) −

∑
l ∈{1,3,5,7}

∏
i ∈V (k)

hi,R (j)
l
. (8)

Finally, the probability of clock region j having clock demand from clock net k in the final placement,
denoted by Hj,k , can be defined as follows,

Hj,k = 1 − Hj,k . (9)

3.2.2 Clock-Aware Packing Attraction Function. UTPlaceF 2.0 adopts the UTPlaceF packing
framework, which consists of maximum-weighted-matching-based and BestChoice-based [12]
clustering algorithms. Both algorithms rely on attraction functions to evaluate the goodness of any
pairwise clustering and iteratively merge high-attraction object pairs to form CLBs. To produce
clock-friendly CLB-level netlists for placement, the packing attraction functions in UTPlaceF are
enhanced to be clock-aware in UTPlaceF 2.0.

The original attraction functions in UTPlaceF for connected objects consist of two components.
The first component is the distance score, which exponentially penalizes objects that are physically
far away in FIP. The second component is the connectivity score, which grants higher priority for
objects that share more small nets [7]. The original packing attraction function for two connected
objects i and j then can be generalized as follows,

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:17

ϕi, j =
(
1 − eγ ·(Di, j−λ)

)
·

∑
e ∈Net(i)∩Net(j)

k

Pe − 1
. (10)

where Di, j denotes the physical distance between i and j in FIP, Net(i) ∩ Net(j) denotes the set of
nets that are shared by i and j, Pe represents the number of pins in net e , k is 2 for two-pin nets
and 1 for other nets, and γ and λ are tuning parameters determined experimentally.
The proposed new attraction function is same as the original one, except that a new term is

introduced to account for the clock legality. It is described by the following expression,

ϕi, j =
(
1 − eγ ·(Di, j−λ)

)
·

∑
e ∈Net(i)∩Net(j)

k

Pe − 1
·
∏

k ∈E (i)∪E (j)

Ht,k . (11)

where E (i) ∪ E (j) denotes the set of clock nets that contain at least one of cell i and cell j, t
represents the clock region that the center of gravity of i and j falls into, and Ht,k is the probability
defined in Equation (9). Here we use clock region t as the estimated target clock region to place the
cluster of i and j. Intuitively, the new term represents the probability that a cluster can be placed
into its estimated target clock region without any clock conflicts. So integrating this new term to
the original attraction function helps to block out clustering cases that are likely to violate clock
region constraint.

The same clock penalty term is applied to all attraction functions in UTPlaceF to make the whole
packing flow clock-aware. With our enhanced clock-aware attraction functions in UTPlaceF 2.0,
better wirelength in the final solutions is demonstrated by our experiments.

3.3 Half-Column Region Assignment
As shown in Figure 3, half-column region constraint is explicitly respected in legalization stage by
our half-column region assignment technique. Here we formally define the half-column region
assignment problem as follows.

Problem 3 (Half-Column Region Assignment). Given a rough-legalized placement, logic
resource capacity of each half-column region, and a feasible clock region assignment solution, assign
cells within each clock region to half-column regions to minimize total pin movement without logic
resource and clock overflow.

Problem 3 is very similar to the clock region assignment problem defined in Problem 2. It can also
be formulated into Formulation (1) but with a simpler clock constraint (1e). So the same relaxation
and minimum-cost flow framework described in Section 3.1.1 and Section 3.1.2 can be seamlessly
applied to solve half-column region assignment problem as well.
The only notable difference from the clock region assignment is the method to update penalty

multipliers for clock overflow resolving. Our proposed penalty multiplier updating algorithm for
half-column region constraint is summarized in Algorithm 3. It should be noted that, given a feasible
clock region assignment solution, the half-column region assignment can be performed within
each clock region independently without impacting clock legality. So the scope of Algorithm 3 is
only limited in a single clock region.

Within a clock region, we first find the target half-column region with the largest clock overflow
in line 1. Then, the cost of moving each clock out of the target half-column region is calculated and
stored in a list from line 2 to line 4. The cost of moving clock e out of half-column r is defined as
follows,

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:18 W. Li et al.

Algorithm 3 Penalty Multiplier Updating For Half-Column Region Constraint
Input: Penalty multiplier λ.
Output: An updated penalty multiplier λ that will results in less clock overflow.
1: Find the half-column region r with the largest clock overflow Omax ;
2: for each clock e in r do
3: l ← l ∪ {Cost(e, r)}; ▷ See Equation (12)
4: end for

5: Sort candidates in l by ascending order of their cost;
6: i ← 0;
7: for each Cost(e, r) ∈ sorted l do
8: if ¬IsFeasible(e, r , λ) then
9: Continue;
10: end if

11: for each cell i in clock e do
12: λi,r ← ∞;
13: end for

14: i ← i + 1;
15: if i ≥ Omax then

16: Return;
17: end if

18: end for

Cost (e, r) =
∑

i ∈V (e)∩V (r)

Pi , (12)

where V (e) ∩ V (r) denotes the set of cells that are simultaneously in clock e and half-column
region r , and Pi represents the total number of pins associated with cell i .

In the loop from line 7 to line 18, we iteratively pick the clock with the smallest moving cost and
block it out of the target half-column region in the subsequent assignment iterations. A feasibility
check similar to the one illustrated in Figure 7 is performed in line 8 to ensure the existence of
feasible assignments after the edge blocking. This process is repeated until the number of iterations
hits the overflow limit in line 15.

4 EXPERIMENTAL RESULTS
UTPlaceF 2.0 was implemented in C++ and compiled by g++ 4.7.2. The official contest evaluation
results conducted by Xilinx is used here to demonstrate the effectiveness of UTPlaceF 2.0.
The characteristics of ISPD’17 benchmark suite are listed in Table 2. This benchmark suite

consists of industry-strength designs with gate counts ranging from 0.45 million to about 1 million.
Several designs in this suite have extremely high resource utilization and clock usage.

As UTPlaceF 2.0 won the first place in ISPD’17 placement contest, we here compare our results
with the second- and third-place contest winners. Table 3 shows the routed wirelength comparison
results that reported by Xilinx Vivado v2016.4. It can be seen that UTPlaceF 2.0 achieves the best
overall routed wirelength and outperforms by 4.0% and 11.0% in routed wirelength compared with
the other two contest winners, respectively.

The runtime comparison is shown in Table 4. Running in a single thread, UTPlaceF 2.0 completes
the largest benchmark CLK-FPGA13 (0.96M cells) in 20 minutes. We also report the runtime

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:19

Table 2. ISPD’17 Placement Contest Benchmarks Statistics

Benchmark #LUT #FF #RAM #DSP #Clocks
CLK-FPGA01 215K 236K 170 75 30
CLK-FPGA02 215K 236K 170 75 30
CLK-FPGA03 242K 270K 255 112 33
CLK-FPGA04 268K 300K 340 150 36
CLK-FPGA05 295K 325K 425 187 39
CLK-FPGA06 322K 354K 510 225 42
CLK-FPGA07 350K 384K 595 262 45
CLK-FPGA08 376K 414K 680 300 48
CLK-FPGA09 392K 431K 765 337 51
CLK-FPGA10 408K 449K 850 375 54
CLK-FPGA11 424K 450K 900 397 55
CLK-FPGA12 440K 484K 950 420 56
CLK-FPGA13 456K 503K 1000 442 57
Resources 538K 1075K 1728 768 N/A

breakdown of UTPlaceF 2.0 in Figure 12(a). On average, the majority (68.4%) of the total runtime
is taken by FIP, while detailed placement, CLB-level global placement, packing, and legalization
respectively consume 20.0%, 5.3%, 3.3%, and 0.3% of the total runtime. We further divide the runtime
of FIP into four components, as shown in Figure 12(b), where the preconditioned conjugate gradient
for quadratic programming takes 88.8% of the FIP runtime, followed by 4.9% and 4.2% for rough
legalization and density-preserving global move, respectively, and only 0.7% is taken by the clock
region assignment.

Table 3. Routed Wirelength Comparison with ISPD’17 Contest Winners

Benchmark 2nd Place 3rd Place UTPlaceF 2.0 (1st Place)
Routed WL Ratio Routed WL Ratio Routed WL Ratio

CLK-FPGA01 2209328 1.001 2268532 1.027 2208170 1.000
CLK-FPGA02 2273729 0.998 2504444 1.099 2279171 1.000
CLK-FPGA03 6229292 1.164 5803110 1.084 5353071 1.000
CLK-FPGA04 3817377 1.032 4085670 1.105 3697950 1.000
CLK-FPGA05 4995177 1.065 5180916 1.104 4692356 1.000
CLK-FPGA06 5605573 1.003 6216898 1.112 5588507 1.000
CLK-FPGA07 2504544 1.024 2676088 1.095 2444837 1.000
CLK-FPGA08 1989632 1.055 2057117 1.091 1885632 1.000
CLK-FPGA09 2583442 0.995 2813538 1.084 2596654 1.000
CLK-FPGA10 4770168 1.069 4839765 1.084 4464341 1.000
CLK-FPGA11 4207699 1.006 4777177 1.142 4184233 1.000
CLK-FPGA12 3376930 1.002 3739517 1.110 3368698 1.000
CLK-FPGA13 3920965 1.019 4320345 1.123 3847832 1.000

Norm. 1.040 - 1.100 - 1.000 -

4.1 Efficiency Validation of Maximum-Flow-Based Feasibility Checking
We validate the efficiency of our maximum-flow-based feasibility checking proposed in Section 3.1.3
by experiments shown in Table 5. The column 2 - 5 separately list the number of solvings (#
Solving) and total solving time (ST) of minimum-cost flow (MCF) and maximum flow (MF) for
each benchmark. The column 6 gives the total solving time taken by MCF and MF. Without the
maximum-flow-based feasibility checking, a MCF instead of a MF solving is required to check if the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:20 W. Li et al.

Table 4. Runtime (Seconds) Comparison with ISPD’17 Contest Winners

Benchmark 2nd Place 3rd Place UTPlaceF 2.0 (1st Place)
Runtime Ratio Runtime Ratio Runtime Ratio

CLK-FPGA01 3023 5.68 354 0.67 532 1.00
CLK-FPGA02 3153 6.15 333 0.65 513 1.00
CLK-FPGA03 4066 3.91 666 0.64 1039 1.00
CLK-FPGA04 3077 4.33 464 0.65 711 1.00
CLK-FPGA05 3631 3.87 680 0.72 939 1.00
CLK-FPGA06 3836 3.60 695 0.65 1066 1.00
CLK-FPGA07 3953 4.68 410 0.49 845 1.00
CLK-FPGA08 4395 8.31 277 0.52 529 1.00
CLK-FPGA09 5428 6.45 414 0.49 842 1.00
CLK-FPGA10 3305 3.39 516 0.53 974 1.00
CLK-FPGA11 4341 4.06 548 0.51 1068 1.00
CLK-FPGA12 4949 6.39 413 0.53 774 1.00
CLK-FPGA13 3748 3.20 548 0.47 1172 1.00

Norm. 4.63 - 0.57 - 1.00 -

FIP (68.4%)

DP (20.0%)

GP (5.3%)

Packing (3.3%)

Legal. (0.3%)

(a)

PCG (88.8%)

Rough Legal. (4.9%)

Global Move (4.2%)

Clock Reg. Assig. (0.7%)

(b)

Fig. 12. Runtime breakdown of (a) UTPlaceF 2.0 and (b) flat initial placement (FIP).

updated penalty multipliers are feasible. In this case, our clock region assignment would become a
pure MCF-based algorithm. We project the required solving time of it by Equation (13) and report
the results in the column 7 of Table 5. The overall speedup of “MCF + MF” over “Pure MCF” for
each benchmark is listed in the last column of Table 5.

Proj. Pure MCF ST =
MCF ST

MCF Solving
(# MCF Solving + # MF Solving) (13)

It can be observed that MF is about one to two orders of magnitude faster than MCF in our
experiments. By applying the maximum-flow-based feasibility checking, we can achieve up to ×2.6
overall speedup. Note that the runtime of MCF is dependent to the partition sizes mentioned in
Section 3.1.4 but the MF-based checking is not. Therefore, even more speedup can be achieved if
smaller partitions are used in the clock region assignment.

4.2 Trade-offs of Different Partition Sizes
Figure 13 gives the trade-offs between HPWL and clock region assignment runtime under differ-
ent partition sizes. We perform experiments on a representative benchmark, CLK-FPGA05, with
partition width and height set to 1, 5, 10, 15, 25, and 30, respectively. All the HPWL and runtime
are normalized to the result with height and width of 5. As can be seen, with larger partition sizes,
the runtime drops quickly and saturates at around 0.4 (normalized runtime) while the wirelength
increases steadily but slowly. Considering the wirelength is not very sensitive to the partition size,

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:21

Table 5. Runtime Speedup by Applying Maximum-Flow-Based Feasibility Checking

Benchmark MCF MF MCF + MF Proj. Pure MCF Speedup# Solving ST (sec) # Solving ST (sec) ST (sec) ST (sec)
CLK-FPGA01 90 0.96 0 0.00 0.96 0.96 ×1.00
CLK-FPGA02 120 1.19 60 0.01 1.20 1.79 ×1.49
CLK-FPGA03 738 22.10 1227 0.34 22.44 58.84 ×2.62
CLK-FPGA04 219 4.25 221 0.05 4.30 8.54 ×1.99
CLK-FPGA05 171 4.57 168 0.05 4.62 9.06 ×1.96
CLK-FPGA06 282 9.58 342 0.11 9.69 21.20 ×2.19
CLK-FPGA07 84 0.91 0 0.00 0.91 0.91 ×1.00
CLK-FPGA08 96 0.77 0 0.00 0.77 0.77 ×1.00
CLK-FPGA09 87 0.95 0 0.00 0.95 0.95 ×1.00
CLK-FPGA10 222 4.15 159 0.03 4.18 7.12 ×1.70
CLK-FPGA11 216 4.79 153 0.03 4.82 8.18 ×1.70
CLK-FPGA12 123 1.88 42 0.01 1.89 2.52 ×1.33
CLK-FPGA13 93 1.61 12 0.01 1.62 1.82 ×1.12

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

HPW
L

Partition Width & Height

N
o
rm

.
H
P
W

L
In
cr
.
(%

)

Runtime

0

2

4

6

8

10

N
orm

.
C
lo
ck

R
egion

A
ssign

.
R
u
n
tim

e

Fig. 13. Trend of HPWL and clock region assignment runtime with different partition sizes for clustering
(Section 3.1.4) on benchmark CLK-FPGA05. All HPWL and runtime are normalized to the result of partition
width and height = 5.

we experimentally choose partition width and height = 5 to achieve fast runtime and reasonably
good solution quality.

4.3 Effectiveness Validation of Clock-Aware Packing
Figure 14 shows the normalized HPWL increases (less is better) of placements with and without
clock-aware packing compared to the lower-bound placements that ignore all clock constraints. As
can be seen, clock-aware packing, for most benchmarks, delivers better wirelength over original non-
clock-aware packing. Another key observation is that, with both proposed clock region assignment
and clock-aware packing techniques applied, UTPlaceF 2.0 can satisfy all clock constraints by only
paying a little wirelength overhead (< 1%).

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

0:22 W. Li et al.

C
L
K
-F
P
G
A
01

C
L
K
-F
P
G
A
02

C
L
K
-F
P
G
A
03

C
L
K
-F
P
G
A
04

C
L
K
-F
P
G
A
05

C
L
K
-F
P
G
A
06

C
L
K
-F
P
G
A
07

C
L
K
-F
P
G
A
08

C
L
K
-F
P
G
A
09

C
L
K
-F
P
G
A
10

C
L
K
-F
P
G
A
11

C
L
K
-F
P
G
A
12

C
L
K
-F
P
G
A
13

0

0.5

1

N
or
m
.
H
P
W

L
In
cr
.
(%

) W/ Clock-Aware Packing W/O Clock-Aware Packing

Fig. 14. Normalized HPWL increases (%) of placements w/ and w/o clock-aware packing compared to
placements without any clock constraint considerations.

5 CONCLUSION
With the increasing complicated FPGA clocking architecture, respecting clock rules is becoming
a fundamental issue in modern FPGA implementation flow. In this paper, we have proposed a
high-performance clock-aware FPGA placement engine, UTPlaceF 2.0, which is capable of satisfying
clock rules for state-of-the-art FPGA devices while still maintaining good wirelength and routability.
An iterative minimum-cost-flow-based clock region assignment framework, a probability-based
clock distribution estimationm method, and a clock-aware packing technique are proposed for
better honoring clock legality throughout the whole placement and packing process. As the first
place winner of ISPD’17 clock-aware FPGA placement contest, UTPlaceF 2.0 can achieve legal and
high-quality placement solutions efficiently, which outperforms all other contest placers in routed
wirelength with competitive runtime.

REFERENCES
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.

Prentice-Hall, Inc.
[2] Larry C. Andrews. 1992. Special Functions of Mathematics for Engineers. SPIE Optical Engineering Press.
[3] Vaughn Betz and Jonathan Rose. 1997. VPR: A new packing, placement and routing tool for FPGA research. In IEEE

International Conference on Field Programmable Logic and Applications (FPL). 213–222.
[4] Yu-Chen Chen, Sheng-Yen Chen, and Yao-Wen Chang. 2014. Efficient and effective packing and analytical placement

for large-scale heterogeneous FPGAs. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
647–654.

[5] Marcel Gort and Jason H. Anderson. 2012. Analytical placement for heterogeneous FPGAs. In IEEE International
Conference on Field Programmable Logic and Applications (FPL). 143–150.

[6] Julien Lamoureux and Steven J. E. Wilton. 2008. On the Trade-off Between Power and Flexibility of FPGA Clock
Networks. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 1, 3 (2008), 13:1–13:33.

[7] Wuxi Li, Shounak Dhar, and David Z. Pan. 2017a. UTPlaceF: A routability-driven FPGA placer with physical and
congestion aware packing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
(2017).

[8] Wuxi Li, Meng Li, Jiajun Wang, and David Z. Pan. 2017b. UTPlaceF 3.0: A Parallelization Framework for Modern
FPGA Global Placement. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 908–914.

[9] Tao Lin, Chris C.N. Chu, Joseph R. Shinnerl, Ismail Bustany, and Ivailo Nedelchev. 2013b. POLAR: Placement based on
novel rough legalization and refinement. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
357–362.

[10] Tzu-Hen Lin, Pritha Banerjee, and Yao-Wen Chang. 2013a. An efficient and effective analytical placer for FPGAs. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

UTPlaceF 2.0: A High-Performance Clock-Aware FPGA Placement Engine 0:23

ACM/IEEE Design Automation Conference (DAC). 10:1–10:6.
[11] Alexander S. Marquardt, Vaughn Betz, and Jonathan Rose. 1999. Using cluster-based logic blocks and timing-driven

packing to improve FPGA speed and density. In ACM Symposium on FPGAs. 37–46.
[12] Gi-Joon Nam, Sherief Reda, Charles J. Alpert, Paul G. Villarrubia, and Andrew B. Kahng. 2006. A fast hierarchical

quadratic placement algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
25, 4 (2006), 678–691.

[13] Ryan Pattison, Ziad Abuowaimer, Shawki Areibi, Gary Gréwal, and Anthony Vannelli. 2016. GPlace: A congestion-
aware placement tool for ultrascale FPGAs. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
68:1–68:7.

[14] Chak-Wa Pui, Gengjie Chen, Wing-Kai Chow, Ka-Chun Lam, Jian Kuang, Peishan Tu, Hang Zhang, Evangeline F.Y.
Young, and Bei Yu. 2016. RippleFPGA: A routability-driven placement for large-scale heterogeneous FPGAs. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 67:1–67:8.

[15] Senthilkumar Thoravi Rajavel and Ali Akoglu. 2011. MO-Pack: Many-objective clustering for FPGA CAD. In ACM/IEEE
Design Automation Conference (DAC). 818–823.

[16] Amit Singh, Ganapathy Parthasarathy, and Malgorzata Marek-Sadowska. 2002. Efficient circuit clustering for area
and power reduction in FPGAs. ACM Transactions on Design Automation of Electronic Systems (TODAES) 7, 4 (2002),
643–663.

[17] Love Singhal, Mahesh A. Iyer, and Saurabh Adya. 2017. LSC: A Large-Scale Consensus-Based Clustering Algorithm
for High-Performance FPGAs. In ACM/IEEE Design Automation Conference (DAC). 30:1–30:6.

[18] Marvin Tom, David Leong, and Guy Lemieux. 2006. Un/DoPack: re-clustering of large system-on-chip designs with
interconnect variation for low-cost FPGAs. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
680–687.

[19] Xilinx Inc. 2017. http://www.xilinx.com. (2017). Accessed: 2017-03-17.
[20] M Xu, Gary Gréwal, and Shawki Areibi. 2011. StarPlace: A new analytic method for FPGA placement. Integration, the

VLSI Journal 44, 3 (2011), 192–204.
[21] Stephen Yang, Aman Gayasen, Chandra Mulpuri, Sainath Reddy, and Rajat Aggarwal. 2016. Routability-Driven FPGA

Placement Contest. In ACM International Symposium on Physical Design (ISPD). 139–143.
[22] Stephen Yang, Chandra Mulpuri, Sainath Reddy, Meghraj Kalase, Srinivasan Dasasathyan, Mehrdad E. Dehkordi,

Marvin Tom, and Rajat Aggarwal. 2017. Clock-Aware FPGA Placement Contest. In ACM International Symposium on
Physical Design (ISPD). 159–164.

Received April 2017; revised September 2017; accepted December 2017

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: April 2017.

http://www.xilinx.com

	Abstract
	1 Introduction
	2 Preliminaries and Overview
	2.1 Clocking Architecture
	2.2 Clock Constraints for Placement
	2.3 Problem Formulation
	2.4 UTPlaceF 2.0 Overview

	3 UTPlaceF 2.0 Algorithms
	3.1 Clock Region Assignment
	3.2 Clock-Aware Packing
	3.3 Half-Column Region Assignment

	4 Experimental Results
	4.1 Efficiency Validation of Maximum-Flow-Based Feasibility Checking
	4.2 Trade-offs of Different Partition Sizes
	4.3 Effectiveness Validation of Clock-Aware Packing

	5 Conclusion
	References

