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High Demand of Analog/Mixed-Signal IC

• Anything related to sensors 
needs analog!

• Internet of Things (IoT), 
autonomous and electric 
vehicles, communication and 
5G networks…

Sources: 
IBM

Advanced computing

Healthcare

Communication
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A Bottleneck in IC Design: Analog/Mixed-Signal
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Analog parts of IC take large design 
efforts

[IBS and Dr. Handel Jones, 2012]

A major reason: analog circuit
layout is usually done manually



Typical Automatic Analog Circuit Design Flow

• Automated analog design often 
consists of front-end and back-end 
flows

• Physical design (back-end) is 
separated in placement and routing

Front-end 
Electrical
Design

Back-end 
Physical
Design
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Analog Routing Problem

Placement Routed Layout



Challenges in Formulating Analog Routing 
Problem
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Symmetry constraints are widely accepted

Shielding,
Avoid active region,

…
No standard rule for additional 
constraints. Design-dependent.

Automatically learn 
from human layouts?

[Ou et al., 2014]



Emerging Machine Learning Applications

[Yang et al., 2018]

Lithography: GAN-OPC Physical Design: WellGAN

[Xu et al., 2019]
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Automatically Learn Guidance from Human Layouts

• Learn routing guidance

• Where the human would likely to 
route the nets

• Extract training data from labeled 
layouts

• Apply learned model to automatic 
routing as guidance
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A ML-Guided Routing Problem
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GeniusRoute Approach

Explicated Constraints

Routing guide: routing strategies learned from human

Heuristic constraints: use a set of detailed heuristics as routing constraints

Conventional Approach

RoutingPlacement

Symmetric Constraints
+

ML-based Routing Guide
Placement Routing



The GeniusRoute Flow

• Learn from GDS layouts

• Pre-process layouts into images

• Predict routing probability using 
autoencoder

• Use prediction as detailed 
routing guidance
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Generating Images with Generative Neural Network



Data-Preprocessing: Extracting Routing from Layouts
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Extract “pins” and routing of nets

Three categories of models:

• Symmetric nets

• Clocks

• Power and Ground



GeniusRoute: Learning Routing Patterns from Human
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Training Phase

Inference Phase

Do we have 
enough data?

Trained



3-Stage Semi-supervised Training Algorithm

• Labeled layouts are hard 
to get

• Could rely on unlabeled 
data to help train the 
model

Neural 
Network

Unlabeled 
Data

Unsupervised
Pre-train

Labeled 
Data

Supervised
Training
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Stage 1: Unsupervised Feature Extraction using VAE

Use cheap unlabeled 
data to learn a general 

feature extraction
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Extracted
Features



Network Architecture: Unsupervised for Stage 1

Conv Conv

Conv
Conv

Conv
Conv

FC

17



Stage 2: Supervised Decoder Training

Fix the feature 
extraction to learn the 

generative model
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Extracted
Features



Stage 3: Supervised Decoder Fine-Tune

Fine-tune the network 
for better accuracy with 

lower learning rate
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Extracted
Features



Network Architecture: Supervised for Stage 2&3

Conv Conv Conv Conv
FC
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Framework Implementation and Environment Setup

• Data preprocessing: C++

• ML model: Python with Tensorflow

• Router: Modified maze routing in C++

• Simulation: Cadence ADE simulator with TSMC 40nm PDK



Experimental Result Examples

Ground Truth

Prediction
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Model
Output

Routed 
Layout



Experimental Results: Simulation Results

• Test on comparators and OTAs

• Evaluate with post layout simulation

• Compare with manual layout and previous methods

Closer results to the manual layout

COMP1 Schematic Manual w/o guide GeniusRoute
Offset (uV) / 480 2530 830
Delay (ps) 102 170 164 163

Noise (uVrms) 439.8 406.6 439.7 420.7
Power (uW) 13.45 16.98 16.82 16.8

23



Experimental Results: More Simulation Results
COMP1 Schematic Manual w/o guide GeniusRoute

Offset (uV) / 480 2530 830
Delay (ps) 102 170 164 163

Noise (uVrms) 439.8 406.6 439.7 420.7
Power (uW) 13.45 16.98 16.82 16.8

COMP2 Schematic Manual w/o guide GeniusRoute
Offset (uV) / 550 1180 280
Delay (ps) 102 196 235 241

Noise (uVrms) 439.8 380.0 369.6 367.8
Power (uW) 13.45 20.28 20.23 20.15

OTA Schematic Manual wo/ guide GeniusRoute
Gain (dB) 38.20 37.47 36.61 37.36

PM (degree) 64.66 72.46 94.68 76.40
Noise (uVrms) 222.0 223.7 292.7 224.8

Offset (mV) / 0.88 3.21 0.39
CMRR (dB) / 59.61 58.52 59.15
BW (MHz) 110.5 102.5 232.1 107.3

Power (uW) 776.93 757.35 715.11 787.82
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Conclusion

GeniusRoute

• A new methodology to automatic learn from human layout and apply in 
automatic flow

• Semi-supervised learning algorithm for data-efficiency

• Experimental results show closed-to-human post layout simulation

Future directions

• How to overcome the challenge of obtaining human layouts for labeled data
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Thank you!


