
Interactive Analog Layout Editing with Instant Placement
Legalization

Xiaohan Gao
CECA, CS Department

Peking University
Beijing, China

xiaohangao@pku.edu.cn

Mingjie Liu
ECE Department

UT Austin
Austin, USA

jay liu@utexas.edu

David Z. Pan
ECE Department

UT Austin
Austin, USA

dpan@ece.utexas.edu

Yibo Lin*

CECA, CS Department
Peking University
Beijing, China

yibolin@pku.edu.cn

Abstract—Analog layout design still relies heavily on manual efforts.
Current fully automated flows are not yet able to satisfy the demands
of versatile customization and not compatible to the existing manual
flows. Interactive layout editing has the potential to bridge the gap
between the manual flows and fully automated flows shooting for both
performance and productivity. In this paper, we propose an interactive
editing framework with instructions for both topological editing and
detailed customization. We also propose an effective instant legalization
algorithm for fast layout update during the real-time interaction with
users.

I. INTRODUCTION

Analog layout design still relies heavily on manual efforts. De-
signers or layout engineers draw device placement and wire routing
according to their design expertise and experience, considering var-
ious constraints like symmetry, matching, signal flow, and so on.
However, increasing design complexity and complicated design rules
are slowing down their productivity and design closure. Automation
tools are desired to speedup analog design flows.

Recently, fully automated frameworks for analog layout generation
have been proposed, such as the ALIGN [1] and MAGICAL [2].
They leverage both machine learning and algorithmic innovations
to automatically generate analog layouts from circuit netlists, and
aim at an end-to-end analog layout design flow without human-in-
the-loop [3]–[6]. These frameworks usually consist of several stages,
such as constraint generation for extracting the layout constraints
from netlists, analog placement to determine the device locations, and
routing to finish the wiring between devices. With the philosophy
of no-human-in-the-loop, these fully automated flows finish layout
synthesis with “one-button-click” and do not expect any intermediate
interaction with designers or human involvement.

While fully automated layout generation can significantly speedup
the prototyping time and provide good initial solutions on specific
circuits, it alone is hard to achieve wide-adoption in the short term
due to the following reasons. 1) Analog circuit topologies are rapidly
evolving with new design practices. A fully automated flow is not
flexible enough to satisfy the versatile customization demands. 2)
Analog layout drawing is designer-specific. That is, two designers
can have quite different ways to layout the same circuit according to
their own experience and taste, which is hard to be implemented in
a fully automated flow. 3) Layouts generated by a fully automated
flow may not align with designers’ intuition, like the example in
Figure 1, leading to performance degradation or difficulties in post-
silicon debugging after tape-out. Therefore, we argue that fully
automated layout generation alone is not enough to completely satisfy

*Corresponding author

(a) (b)

Fig. 1: Layouts for an OTA design. (a) The manual solution is very
different from (b) the tool solution [2].

the demands for lowering the design efforts and speeding up design
closure.

By analyzing the designers’ workload and working patterns, we
have following observations: 1) Designers often need to visually
inspect and attempt different layout strategies before finalizing. 2)
Designers are usually not willing to risk any unfamiliar layout
topologies. 3) A significant portion of time is spent on cleaning design
rule violations. In other words, designers expect a tool to improve
their productivity but still have full control over the design process.
Thus, interactive layout editing can be a promising option to bridge
the gap between designers’ expectation and existing fully automated
flows. Based on such observations, to speedup the design closure
and increase the productivity of designers, we propose an interactive
analog layout editing framework. The idea of this framework is to
free designers from dealing with detailed design rules and focus
on layout topologies. Meanwhile, we still keep the freedom for full
layout customization.

The main contributions of this paper are as follows.
• We propose an interactive analog placement framework that sup-

ports commands for fast layout editing. The set of instructions
cover constraints for global perturbation and commands for local
adjustment, enabling both topological editing and fine-grained
customization.

• We propose an instant legalization algorithm for incremental
layout update with linear time complexity, enabling real-time
interaction upon users’ input instructions.

• Experimental results on open-source analog circuits such as
comparators, amplifiers, and data converters demonstrate that
the framework can enable efficient layout editing and reduce
the turn-around time for layout designers.

The rest of the paper is organized as follows. Section II introduces
the limitation of fully-automated layout synthesis and the concept of
interactive analog layout editing. Section III presents the workflow978-1-6654-3274-0/21/$31.00 ©2021 IEEE

of layout editing. Section IV details the algorithms of the instant
legalization technique. Section V demonstrates an interactive layout
editing process and performance of the legalization algorithm. Sec-
tion VI summarizes the paper.

II. PRELIMINARIES

In this section, we introduce the background and problem formu-
lation of this work.

A. Fully-Automated Layout Synthesis

A fully-automated flow aims at end-to-end layout generation
without human-in-the-loop. The flow takes analog circuit netlists and
technology libraries as input, and outputs placed and routed layout
solutions in GDSII format. The flow performs placement and routing
internally with well-defined objectives and layout constraints to
optimize. For example, the automated tools need to detect symmetric
and matching devices, and handle these constraints in placement and
routing.

So far, developing an end-to-end flow that can generate high-
quality and stable solutions is still challenging, as it is hard to
define a universal analytical objective for analog layout problems.
Existing work like ALIGN and MAGICAL [1], [2] has incorporated
machine learning based techniques to extract designers’ experience
from manual layouts. These tools demonstrate good initial solutions
for specific circuits, but still need further improvement for wide
adoption of designers.

B. Interactive Analog Layout Editing

Interactive analog layout editing approaches the layout gener-
ation problem in an orthogonal but complementary way to the
fully-automated methodology. It takes the layout generated a fully-
automated flow as input, and involves designers for customization.
It provides high-level control over the layout topology but leaving
the low-level design rule fixing and legalization to automated algo-
rithms. Once designers are satisfied with the layout, the interactive
layout editing tool outputs the eventual layout solution in GDSII
format. Such a methodology can bridge the gap between designers’
expectation and the current performance of automated tools through
fast interaction.

In this work, we focus on interactive analog placement editing. We
formulate the problem as follows:

Problem 1 (Interactive Analog Placement Editing). Given an initial
analog layout as input, define a set of commands and an interactive
framework for users to efficiently edit the layout topology with the
commands. The set of commands should be able to achieve any
topological changes.

The target is that users can progressively make changes to the
layout topology with input commands. We also need a legalization
backbone for real-time layout update upon input commands for
interaction with users. We define the problem as follows:

Problem 2 (Interactive Analog Placement Legalization). Given an
input analog placement solution, constraint graphs, and layout con-
straints, legalize the placement subjecting to the constraints with
minimum perturbation to the layout and minimum runtime.

We consider hierarchical designs with layout symmetry constraints
in this work. The perturbation is evaluated with total displacement
of devices. Runtime is very critical for smooth interaction when the
designers make progressive changes.

C. Analog Placement

Layout editing is closely related to analog placement. A series
of studies make efforts on improving the representation of analog
placement [7], such as B*-tree [8], [9] and O-tree [10], and leveraging
automated searching techniques like simulated annealing to find
high-quality solutions. Recent work starts to investigate automatic
prediction of layout constraints with deep learning [3], [4] as well as
performance prediction and placement optimization [5], [11], [12].
Another line of work focuses on procedural based layout generation
[13]–[15]. Although some of the works are able to produce silicon
results, users have to write significant amount of codes, limiting
the wide adoption of the solutions. After surveying the advantages
and limitations of prior work, we see interactive layout editing as
a potential bridge between the fully automated analog placement
and the procedural based flow with instant layout visualization and
capability of full customization.

Constraint graph is another common representation for layout
topology [16]. In this representation, each placement topology cor-
responds to two directed acyclic graphs: a horizontal constraint
graph (HCG) and a vertical constraint graph (VCG). Each graph
specifies the relative locations of devices horizontally or vertically.
For example, if a device B is located at the right of another device A,
an edge is inserted to the HCG from vertex A to vertex B. Constraint
graph can be adapted to handle multiple types of analog layout
constraints [17]. We leverage the constraint graph for simplicity and
propose a novel constraint graph representation with a single unified
graph taking the advantage of topological-sort properties. Note that
our layout editing scheme is compatible with different analog layout
representation.

III. INTERACTIVE LAYOUT EDITING

In this section, we explain the workflow of interactive layout
editing and our framework in detail.

A. Interactive Layout Editing Workflow

Figure 2 shows the software architecture of our interactive analog
layout editing tool. In the frontend, we provide a command inter-
face and GUI interface for displaying analog layout and real-time
interaction. All events on the interface are encoded as commands.
We adopt analog placement engine of MAGICAL [2] to generate the
initial placement results shown to the users. The commands input
by users will be interpreted to internal operations via a command
interpreter. The internal operations are applied to update our data
representation including constraint graph, constraint sets, and cell
location information. If the user requests a legalized layout, the
legalizer will do legalization sufficiently fast in the feedback phase,
so that the users get the legalized results shown on the interaction
interface instantly.

B. Layout Editing Command

Given an initial placement result generated by an automation
tool, the user may not be satisfied with the solution and expect
flexibility to adjust the placement results. We define a simple and
extensible command set. The user can describe their demand in a
sequence of commands. The interface mainly supports two types
of commands: fine-grained topology-related commands and coarse-
grained constraint-related commands. Table I lists six commands.
Commands move, spacing, resize and swap are fined-grained
and manipulate the placement topology or geometry. Command
arrayAdd adds an array constraint which aligns the devices, and

Command
Interpreter

Update Constraint Graph
Update Constraint Sets

Instant
Legalization

Command
Stream

Internal
Operations

Command
Interface

GUI

Automated
Analog Flow

Updated
Placement

Technology
Library

Analog Design

Initial Placement

User Interface

Fig. 2: Workflow of layout editing.

TABLE I: User command set.

Command Parameters Description

move device vi, location (x, y) move a device to a location
spacing devices vi, vj , spacing width W add spacing between devices
resize shape w, h change the shape of a device
swap devices vi, vj swap two devices

arrayAdd devices {vi} add array constraint
symAdd devices vi, vj sym axis Ak add symmetry constraint

command symAdd adds a symmetry constraint which enforce sym-
metric locations of devices. Naturally, the commands form a complete
set for layout editing; i.e., for any two topologically different layouts
Li and Lj , we can find a command sequence converting Li to Lj .
The command sequence is usually short.

C. Command Interpretation

The layout is maintained in an internal representation with the
constraint graph and a constraint set. All commands defined before
can be realized with a sequence of internal operations on the internal
representation. Similar to the command set, we define a group
of standard internal operations on the constraint graph: {Insert,
Remove}. Take command swap for example. We can implement
command swap for swapping the locations of two devices vi, vj with
{Insert(vi, pj), Remove(vi), Insert(vj , pi), Remove(vj)} on
the constraint graph, where pi, pj are the original locations of vi, vj .
If inserting a vertex vi to the position vj being removed, the Insert
operation will query the vertices which are adjacent to vj before and
determine the new edges for vertex vi.

IV. INSTANT LEGALIZATION

In practical scenarios, the users conduct commands and run le-
galization frequently, so the legalization process is supposed to be
sufficiently fast and consistent to ensure that users can see reliable
legalized placement results immediately. In this section, we explain
the detailed implementations of our linear-time legalization algorithm.
We first give an overview of our proposed legalizer in Section IV-A.
Then we introduce a novel placement topology representation named
mixed constraint graph in Section IV-B. The mixed constraint graph
data structure supports the internal operations aforementioned in con-
stant time O(1) and legalization in linear time O(n) (n is the number
of devices of the analog circuit). The detailed algorithm involves a
layout partitioning technique and a topological sort based legalization
scheme described in Section IV-C and Section IV-D, respectively. A
brief analysis of time complexity is given in Section IV-E. Readers
can refer to Table II for notations.

TABLE II: Notation

Symbol Description

L layout
Gh, Gv horizontal/vertical constraint graph
Gm mixed constraint graph

{(Ai, Pi)}i=1,··· ,k symmetry axes with pair groups
{Bi}i=1,··· ,t blocks

bxl, bxr, byb, byt left, right, bottom and top boundaries

A. Legalizer Overview

Our legalizer can handle both flat circuits and hierarchical circuits.
The legalization flow for a flat circuit is shown in Algorithm 1. The
flow can be easily extended to hierarchical circuits by tackling the
circuit hierarchy from the bottom up. For hierarchical circuits, the
legalization process starts with the leaf-level subcircuits in the circuit
hierarchy tree. At the leaf level, the algorithm takes the device-level
constraint graph and device symmetry groups as inputs and completes
legalization inside each subcircuit. For a higher-level subcircuit, we
treat the child subcircuits as cells and repeat the legalization process.

Algorithm 1 Instant Legalization

Input: initial constraint graphs Gh and Gv , symmetry axes with their
corresponding symmetry pair groups {(Ai, Pi)}

Output: legalized layout L
1: for Ai, Pi in {(Ai, Pi)} do
2: traverse Pi and update boundary (bxli , bxri , bybi , byti)

3: Blocks {Bi} ← PARTITIONLAYOUT({(bxl, bxr, byb, byt)})
4: construct global mixed constraint graph Gm

5: for Bi in {Bi} do
6: do topo-sort based legalization inside Bi

7: do topo-sort based legalization on Gm

Algorithm 1 outlines three-step legalization. The first step is to
partition the layout into blocks based on constraint groups (line 1-
3). We can support multiple constraint types including symmetry
constraint, matching constraint, and array constraint, and we take
symmetry constraint in this paper for example. Each symmetry group
contains a symmetry axis Ai and a symmetry group Pi. Symmetry
Group Pi is a set of symmetry pairs (ci, cj), where ci and cj are
cells (we generalize “cell” to denote a device or a subcircuit in
hierarchical circuits if not specially mentioned). Given the symmetry
groups {(Ai, Pi)}, we can traverse the cells ci in the group to get the
boundaries in four directions xl, xr, yb, yt (left, right, bottom, top)
(line 1-2). Then, we add virtual lines to split the layout into grids and
merge grids correlated to the same symmetry group to a block (line
3). We will go deeper in Section IV-C. The topology between blocks
will be described as a mixed constraint graph(MCG) Gm (line 4).
We will introduce the MCG in Section IV-B. The next step is to do
legalization inside each block with a topological-sort-based approach
described in Section IV-D (line 5-6). After all blocks are legalized, the
final step is to apply a similar but coarse-grained approach to mixed
graph Gm. Finally, we get a legalized layout L without overlaps.

B. Mixed Constraint Graph Representation

We derive mixed constraint graph (MCG) from constraint graph
representation described in Section II-C. An MCG is a combination
of HCG and VCG. Given a HCG Gh = (V,Eh) and a VCG Gv =
(V,Ev), we can obtain the MCG Gm = (V,Eh ∪ Ev). Figure 3
illustrates how we extract the MCG from a layout.

V1

V2

V3

V4

V5

(a)

V4

V1

V5

V3

V2

HCE

VCE

(b)

Fig. 3: Mixed constraint graph with horizontal constraint edges
(HCEs) and vertical constraint edges (VCEs).

Intra-Block Legalization
Layout Partitioning

Topo Sort

Sym Axis

Symmetry Group
Block

Slice Line

move upward

move symmetricallymove left

cell moving

topo sort order

Fig. 4: Layout partitioning and intra-block legalization.

Note that Gm is a heterogeneous graph; namely, Gm contains two
different types of edges, horizontal constraint edges from Gh and ver-
tical constraint edges from Gv . There is a one-to-one correspondence
between MCG and the pair of HCG, VCG. Because each layout can
be uniquely represented as a horizontal graph and a vertical graph,
we can represent the layout in a unique mixed constraint graph.

1) Topological Sort on MCG: The MCG keeps the information
from the original constraint graph but also introduces a new property
with topological sort.

For a directed graph G = (V,E), the topological sort gives a linear
ordering S of vertices in V . If there is a directed edge 〈u, v〉, then
vertex u appears before vertex v in ordering S. If we regard the edges
as dependencies among vertices, then the topological sort indicates an
order that no vertex depends on its subsequent vertices. For example,
we can give a topological order of the MCG in Figure 3(b) as
S = {v2, v1, v5, v3, v4}. If we move a vertex vi towards the up
right direction, the movement does not impact the vertices before vi
in S. Because of this property, we can develop an algorithm that
traverses each cell only once and computes legal locations without
backtracking. We will discuss the topological-sort-based algorithm in
Section IV-D.

Our algorithm requires that the MCG has a topological ordering.
Considering that MCG is a directed acyclic graph (DAG) and any
DAG has at least one topological ordering, Theorem 1 holds.

Theorem 1. Any MCG has at least one topological ordering.

C. Layout Partitioning Technique

We partition the layout according to the symmetry constraint
groups. That is, we divide the legalization problem into subprob-
lems for each symmetry constraint group. Figure 4 shows a layout
partitioning example where there are only two symmetry groups.

Algorithm 2 details the layout partitioning process and introduce a
slicing line procedure. As mentioned in Section IV-A, the boundaries

(bxl, bxr, byb, byt) are calculated and passed to this step. We first sort
the four boundary arrays in ascending order (line 11). Then a slicing
rule is applied to x direction and y direction respectively (line 12).
Taking x direction for example, we add a vertical slicing line at the
middle of bxr[i] and bxl[j] if bxr[i] is less than bxl[j] and there is no
other boundary value between bxr[i] and bxl[j] (line 1-8). Take the
Figure 4 for example, the bottom boundary bybi of symmetry group
(Ai, Pj) follows the top boundary bytj closely (there are no other
boundaries between them), so we add a horizontal slice line between
bytj and bybi .

Algorithm 2 Layout Partitioning

Input: boundaries bxl, bxr, byb, byt of symmetry groups
Output: partitioned layout blocks {Bi}

1: function ADDSLICELINE(b1, b2)
2: i← 0, j ← 0
3: while i 6= m do
4: while b1[j] < b2[i] do
5: j ← j + 1

6: if b1[j] < b2[i+ 1] then
7: ADDLINE((b1[j] + b2[i])/2)
8: i← i+ 1

9: end function
10: function PARTITIONLAYOUT(bxl, bxr, byb, byt)
11: SORT(bxl), SORT(bxr), SORT(byb), SORT(byt)
12: ADDSLICELINE(bxl, bxr), ADDSLICELINE(byb, byt)
13: traverse slice lines and get slices grids
14: construct blocks {Bi} from sliced grids
15: end function

With the slicing lines added, the layout is divided into virtual grids.
The grids associated with the same symmetry group are clustered into
one block. The grids independent of symmetry groups are directly
constructed as blocks. Shown in Figure 4, in the block Bi with
symmetry group (Ai, Pi), there are some cells not belonging to Pi.
For constraint groups other than symmetry constraint mentioned here,
the divide and conquer methodology still works.

D. Topological-Sort-based Legalization

We propose an efficient legalization scheme based on topological
sort. Algorithm 3 presents an implementation of symmetry-aware
legalization based on two-fold topological sort. As shown in Figure 4,
for an MCG Gm

l of a block with symmetry axis, the symmetry axis
separates the block from the middle in geometry and also split the
MCG into two subgraphs (the subgraph of MCG left to the symmetry
axis and the subgraph of MCG right to the symmetry axis for a
symmetry axis parallel to the y-axis). Imagine our legalization is a
process of spreading the devices outward from the symmetry axis
while eliminating the overlaps. As a horizontal constraint edge of
MCG indicates a geometry constraint in the positive direction of the
x-axis, we want the constraint edge to indicate the direction away
from the symmetry axis. So we mirror the subgraph of MCG left
to the symmetry axis, that is, we reverse the direction of horizontal
constraint edges (every horizontal constraint edge switches its head
and tail). We denote the mirrored left subgraph of MCG as Gm

l

and the subgraph right to the symmetry axis as Gm
r . The legalizer

maintains a queue of vertices with zero in-degrees for each MCG.
At each step, the legalizer takes one vertex vl out of queue Ql

(line 6). We find all the incoming edges {〈u, vl〉} for vertex vl.
A horizontal edge 〈u, vl〉 indicates that vl is left to u, while a

Algorithm 3 Topological-Sort-based Legalization

Input: MCGs Gm
l , Gm

r

Output: Legalized block
1: function TOPSORTLEGALIZER(Gm

l , Gm
r)

2: Ql ← empty queue, Qr ← empty queue
3: in-degree inl, inr

4: push v with 0 inl (or inr) into Ql (or Qr)
5: while Ql 6= ∅ do
6: vl ← Ql.pop front
7: update location of vl
8: for each v adjacent to vl do
9: inl[v]← inl[v]− 1

10: if inl[v] = 0 then
11: Ql.push(v)

12: if vl in a symmetry pair (vl, vr) then
13: while ur 6= vr do
14: ur ← Qr.pop front
15: update location of ur

16: for each u adjacent to ur do
17: inr[u]← inr[u]− 1
18: if inr[u] = 0 then
19: Qr.push(u)

20: update location of vl, vr symmetrically
21: while Qr 6= ∅ do
22: vr ← Qr.pop front
23: update location of vr
24: for each v adjacent to vr do
25: inr[v]← inr[v]− 1
26: if inr[v] = 0 then
27: Qr.push(v)

28: end function

vertical edge indicates that vl is above u. Then, we move vl to
min{xu − (wvl + wu)/2} in x direction which ensure vl satisfies
the horizontal constraints {〈u, vl〉}. We only move vl to the left and
move vl upward to remove overlaps. For V3 in Figure 4, we move it
to the left and upward to resolve the overlaps with V1 and V2.

When the traversal reaches a vl which is in a symmetry pair
(vl, vr), the legalizer performs a similar traversal on Gm

r to reach
vr (line 13-19). We assign symmetric and legal coordinates for
vl and vr , which means that the distance to symmetry axis takes
max{|xaxis − xvl |, |xvr − xaxis|} and the y coordinate takes
max{yvl , yvr} (line 20). Figure 4 shows that V4 is moved to a
symmetrical location with V3. After the location of some v get
legalized, we decrease the in-degrees of every vertex u with directed
edge 〈v, u〉 and add the vertex to the corresponding queue if the in-
degree becomes zero. The whole algorithm terminates when the two
queues Ql and Qr are empty.

Suppose that we have the topological orders Sl for Gm
l and Sr

for Gm
r . Sl and Sr preserve the order for symmetry groups, claimed

in Theorem 2. The property ensures that we can synchronize the
traversals of two MCGs without skipping any vertex of another MCG.

Theorem 2. For two symmetry pair (ui, vi) and (uj , vj), if ui

appears before uj in a topological sort of Gm
l , then vi appears

before vj in any topological sort of Gm
r .

E. Time Complexity Analysis

We present a brief analysis of the time complexity. We will show
that the flow of Algorithm 1 is O(n) (n is the number of devices

IBIAS
VIP VIN

VDD VDD

T4T5

T0T1 T2 T3

T6T7

(a)

1

0

2 3

4 5

67

(b)

1

0

4

5

7 6

2 3

(c)

01

2 3 5

7 6

4

(d)
01 2 3

4

7 6

5

(e)

01 2 3

4

67

5

(f)

Fig. 5: An example of layout editing process with command
sequence: {swap([4], [2, 3]), symAdd([1, 0], A2), move([1, 0]),
move([5]), symmAdd([5], A2)}.

of the analog circuits). Firstly, the layout partitioning stage is O(n).
There are k symmetry groups. The slicing lines divide the layout
to O(k2) non-empty grids. The number of grids is always much
less than the number of devices n, so O(k2) is O(n). The sorting
process is O(k log k) (line 11 of Algorithm 2). Adding slicing lines
only scans the boundaries once (line 12), which is O(k). Building
blocks and mcg requires a traversal of all grids(line 13-14), which is
O(k2). Therefore, the first part (line 1-4 of Algorithm 1) is O(n).
The topological-sort based legalization is O(nB), where nB is the
number of devices in the block B. The time complexity of topological
sort on graph G = (V,E) is O(|V | + |E|). For MCG, we have a
good property pointed in Lemma 1. Theorem 3 summarizes the linear
time complexity.

Lemma 1. For a MCG Gm = (V,E), |E| is O(|V |).

Theorem 3. The proposed legalization process runs in O(n).

V. EXPERIMENTAL RESULTS

A. Interactive Editing Process

We illustrate the functionality of interactive layout editing with a
simplified example. Figure 5 shows how to convert a layout generated
by automation tool to a desired layout. The first layout in Figure 5
is a part of a placement layout generated by the automation tool
MAGICAL [2] and the corresponding representation is shown in
Figure 5(b). Assume that a designer gets the initial placement layout
shown in Figure 5 from the automation tool, but the designer is
not satisfied with the layout. We support an interactive process that
the designer can conduct the commands defined in Table I and
see the legalized placement layout immediately. At the first step,
command swap is conducted between device 4 and devices {2,
3}. The command is interpreted as swapping v4 and {v2, v3} on
constraint graph. With instant legalization, the user can see the layout
shown in Figure 5(c). At the next step, command symAdd adds a
new symmetry group with symmetry pair {v1, v0}. The symmetry
constraint is presented in Figure 5(e). Then several move commands

TABLE III: Statistics of the circuits

Circuit OTA1 OTA2 OTA3 COMP ADC1 ADC2

Devices 25 49 42 17 114 211
Hierarchy - - - - X X

TABLE IV: Legalization performance

TOPO LP

Tseq ms Dmax % Davg % Tseq ms Dmax % Davg %

OTA1 0.16 31.1 17.7 33.3 40.9 13.0
OTA2 0.23 43.4 5.1 33.4 43.4 5.1
OTA3 0.20 10.9 3.99 35.4 16.2 3.3
COMP 0.12 11.8 4.20 31.5 12.6 3.9
ADC1 0.84 14.1 10.1 101.7 16.4 8.0
ADC2 1.06 21.7 11.1 253.7 19.6 6.1
Avg. - 22.2 8.7 - 24.9 6.6
Ratio 1.00 - - 192.2 - -

are conducted to re-assign device locations. After a symAdd which
adds the device 5 to the left symmetry group, the user finally reaches
a desired layout result.

B. Legalization Performance

Furthermore, we set up application scenarios to validate the instant
legalization of our feedback phase. We implement the algorithms in
C++ and Python and perform our experiments on a Linux server
with 20-core Xeon(R) CPU @ 2.1GHz. We build a dataset to test
the legalization algorithm as follows.

The circuits are from the open-source repository MAGICAL [2]
with statistics in Table III. The dataset contains three operational
transconductance amplifiers (OTAs), one comparator (COMP) and
two analog to digital converters (ADCs). All circuits contain sym-
metry group constraints. The ADC circuits are relatively large and
have a hierarchy. We prepare our dataset by perturbing the analog
circuit layouts generated by the automation tool. First, we generate
one initial placement result for each circuit by MAGICAL. Then a
human command stream can be simulated by generating a random
sequence of commands listed in Table I. For each initial placement
layout, we obtain 10 feasible command streams to build 10 different
pre-legalization layouts. Therefore, we get a dataset with 60 pre-
legalization layouts to validate the performance of our legalization
algorithm.

Also, we adopt the concept of linear-programming-based legaliza-
tion from MAGICAL and implement an LP legalizer for comparison.
The objective of the LP legalizer is to minimize the displacement.
We use GUROBI as the LP solver. Table IV shows the performance
of the legalizers. We evaluate our legalization algorithm with a
runtime metric and two displacement metrics. The Tseq metric is the
runtime of doing one-shot legalization after conducting the complete
command stream.The Dmax and Davg metrics denote the maximum
cell displacement and the average cell displacement in a layout,
respectively. The D metrics are measured in percentage of Manhattan
distance divided by half-perimeter of the layout bounding box. The
Tseq , Dmax and Davg metrics take the maximum value over the
10 layout samples. Our legalizer produces legalized layout with
displacement close to optimal value and the legalized layout is usually
similar to the one desired. As shown in Table IV, our legalizer
can give a legalized layout within about 1ms for each case, which
indicates that there is almost no delay when the users edit the layout.

VI. CONCLUSION

In this paper, we propose an analog placement paradigm with
interactive analog layout editing. We introduce the new concept,

analog layout editing, to bridge the gap between existing analog
layout automation tools and experienced designers. We define a
complete process with command set, command interpretation, and
instant legalization. We propose a novel layout representation, mixed
constraint graph, and topological-sort-based legalization approach for
layout editing in linear time complexity. The experimental results
show the usability and efficiency of our algorithm. In future work,
we will enhance the expressivity of our layout editing for better
customization.

ACKNOWLEDGE

This project is supported in part by the National Key Research and
Development Program of China (No. 2019YFB2205001).

REFERENCES

[1] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns,
R. Harjani, J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “Align: Open-
source analog layout automation from the ground up,” in Proc. DAC,
2019, pp. 1–4.

[2] B. Xu, K. Zhu, M. Liu, Y. Lin, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“Magical: Toward fully automated analog ic layout leveraging human
and machine intelligence,” in Proc. ICCAD. IEEE, 2019, pp. 1–8.

[3] K. Kunal, T. Dhar, M. Madhusudan, J. Poojary, A. Sharma, W. Xu,
S. M. Burns, J. Hu, R. Harjani, and S. S. Sapatnekar, “GANA: Graph
convolutional network based automated netlist annotation for analog
circuits,” in Proc. DATE, 2020.

[4] K. Kunal, J. Poojary, T. Dhar, M. Madhusudan, R. Harjani, and S. S.
Sapatnekar, “A general approach for identifying hierarchical symmetry
constraints for analog circuit layout,” 2020.

[5] M. Liu, K. Zhu, X. Tang, B. Xu, W. Shi, N. Sun, and D. Z. Pan,
“Closing the design loop: Bayesian optimization assisted hierarchical
analog layout synthesis,” in Proc. DAC. IEEE, 2020, pp. 1–6.

[6] K. Zhu, H. Chen, M. Liu, X. Tang, N. Sun, and D. Z. Pan, “Effective
analog/mixed-signal circuit placement considering system signal flow,”
in Proc. ICCAD. IEEE, 2020.

[7] M. P.-H. Lin, Y.-W. Chang, and C.-M. Hung, “Recent research develop-
ment and new challenges in analog layout synthesis,” in Proc. ASPDAC.
IEEE, 2016, pp. 617–622.

[8] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei
Wu, “B*-trees: a new representation for non-slicing floorplans,” in
Proc. DAC, 2000, pp. 458–463.

[9] P.-Y. Chou, H.-C. Ou, and Y.-W. Chang, “Heterogeneous b*-trees for
analog placement with symmetry and regularity considerations,” in
Proc. ICCAD. IEEE, 2011, pp. 512–516.

[10] Y. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, “Block placement
with symmetry constraints based on the o-tree non-slicing representa-
tion,” in Proc. DAC, 2000, pp. 464–467.

[11] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, W. Xu, S. Sapatnekar,
R. Harjani, and J. Hu, “Exploring a machine learning approach to
performance driven analog ic placement,” in Proc. ISVLSI. IEEE, 2020,
pp. 24–29.

[12] M. Liu, K. Zhu, J. Gu, L. Shen, X. Tang, N. Sun, and D. Z. Pan, “To-
wards decrypting the art of analog layout: Placement quality prediction
via transfer learning,” in Proc. DATE, 2020, pp. 496–501.

[13] J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, K. Jung,
L. Kong, N. Narevsky, Y. Lu, N. Sutardja et al., “Bag: A designer-
oriented integrated framework for the development of ams circuit gen-
erators,” in Proc. ICCAD. IEEE, 2013, pp. 74–81.

[14] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. NikoliC, and
E. Alon, “Bag2: A process-portable framework for generator-based ams
circuit design,” in Proc. CICC. IEEE, 2018, pp. 1–8.

[15] C. Wulff and T. Ytterdal, “A compiled 9-bit 20-ms/s 3.5-fj/conv. step sar
adc in 28-nm fdsoi for bluetooth low energy receivers,” IEEE Journal
Solid-State Circuits, vol. 52, no. 7, pp. 1915–1926, 2017.

[16] B. Yao, H. Chen, C.-K. Cheng, and R. Graham, “Floorplan representa-
tions: Complexity and connections,” ACM TODAES, vol. 8, no. 1, pp.
55–80, 2003.

[17] Q. Ma, L. Xiao, Y. Tam, and E. F. Y. Young, “Simultaneous handling of
symmetry, common centroid, and general placement constraints,” IEEE
TCAD, vol. 30, no. 1, pp. 85–95, 2011.

